Biomedical Microdevices

, Volume 15, Issue 1, pp 97–108 | Cite as

Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery

  • Alexander C. Barbati
  • Cheng Fang
  • Gary A. Banker
  • Brian J. Kirby
Article

Abstract

We present the design, analysis, construction, and culture results of a microfluidic device for the segregation and chemical stimulation of primary rat hippocampal neurons. Our device is designed to achieve spatio-temporal solute delivery to discrete sections of neurons with mitigated mechanical stress. We implement a geometric guidance technique to direct axonal processes of the neurons into specific areas of the device to achieve solute segregation along routed cells. Using physicochemical modeling, we predict flows, concentration profiles, and mechanical stresses within pertiment sections of the device. We demonstrate cell viability and growth within the closed device over a period of 11 days. Additionally, our modeling methodology may be generalized and applied to other device geometries.

Keywords

Drug delivery Microfluidic Cell culture  Axonal transport Axonal damage Neuron Neurodegenerative disease PDMS Huntington’s disease 

Notes

Acknowledgments

The authors thank Barbara Smoody for her expert technical assistance, and acknowledge funding from the National Multiple Sclerosis Society (MS Center Grant CA 1055-A-3); CF is supported by a postdoctoral fellowship from the National Multiple Sclerosis Society. ACB is supported by a Graduate Research Fellowship from the National Science Foundation. This work is based upon work supported by the STC Program of the National Science Foundation under Agreement No. ECS-9876771, and was performed in part at the Cornell NanoScale Facility, which is supported by the National Science Foundation (Grant ECS-0335765).

References

  1. G. Banker, K. Goslin (eds.), Culturing nerve cells (MIT Press, 1998)Google Scholar
  2. R. B. Campenot, Local Control of Neurite Development by Nerve Growth-Factor. P Nat. Acad. Sci. USA 74(10), 4516–4519 (1977)CrossRefGoogle Scholar
  3. R.B. Campenot, Development of sympathetic neurons in compartmentalized cultures 1. local-control of neurite growth by nerve growth-factor. Dev. Biol. 93(1), 1–12 (1982a)CrossRefGoogle Scholar
  4. R.B. Campenot, Development of sympathetic neurons in compartmentalized cultures 2. local-control of neurite survival by nerve growth-factor. Dev. Biol. 93(1), 13–21 (1982b)CrossRefGoogle Scholar
  5. K.J. De Vos, A.J. Grierson, S. Ackerley, C.C. Miller, Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31(1), 151–173 (2008)CrossRefGoogle Scholar
  6. P.G. Gross, E.P. Kartalov, A. Scherer, L.P. Weiner, Applications of microfluidics for neuronal studies. J. Neurol. Sci. 252(2), 135–143 (2007)CrossRefGoogle Scholar
  7. C. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Issacson, J. Turner, W. Shain, Aligned microcontact printing of micrometer-scale poly-l-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans. Biomed. Eng. 47(1), 17–21 (2000)CrossRefGoogle Scholar
  8. S. Kaech, G. Banker, Culturing hippocampal neurons. Nat. Protoc. 1(5), 2406–2415 (2006)CrossRefGoogle Scholar
  9. S. Kaech, C.F. Huang, G. Banker, Short-term high-resolution imaging of developing hippocampal neurons in culture. Cold Spring Harb. Protoc. (2012). doi:10.1101/pdb.prot068247
  10. T.M. Keenan, A. Folch, Biomolecular gradients in cell culture systems. Lab Chip 8, 34–57 (2008)CrossRefGoogle Scholar
  11. B.J. Kirby, Micro- and Nanoscale Fluid Mechanics Transport in Microfluidic Devices (Cambridge University Press, 2011)Google Scholar
  12. D. Kleinfeld, K. Kahler, P. Hockberger, Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8(11), 4098–4120 (1988)Google Scholar
  13. A. Kunze, R. Meissner, S. Brando, P. Renaud, Co-pathological connected primary neurons in a microfluidic device for alzheimer studies. Biotechnol. Bioeng. 108(9), 2241–2245 (2011)CrossRefGoogle Scholar
  14. S.P. Lacour, R. Atta, J.J. FitzGerald, M. Blamire, E. Tarte, J. Fawcett, Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sens. Actuators, A, Phys. 147(2), 456–463 (2008)CrossRefGoogle Scholar
  15. I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1(1), 423–449 (2008)CrossRefGoogle Scholar
  16. L.J. Millet, M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette, Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7, 987–994 (2007)CrossRefGoogle Scholar
  17. J. Monahan, A.A. Gewirth, R.G. Nuzzo, A method for filling complex polymeric microfluidic devices and arrays. Anal. Chem. 73(13), 3193–3197 (2001)CrossRefGoogle Scholar
  18. M.P. Murphy, How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009)CrossRefGoogle Scholar
  19. A.A. Oliva, C.D. James, C.E. Kingman, H.G. Craighead, G.A. Banker, Patterning axonal guidance molecules using a novel strategy for microcontact printing. Neurochem. Res. 28, 1639–1648 (2003)CrossRefGoogle Scholar
  20. T.M. Pearce, J.C. Williams, Microtechnology: Meet neurobiology. Lab Chip 7, 30–40 (2007)CrossRefGoogle Scholar
  21. J.M. Peyrin, B. Deleglise, L. Saias, M. Vignes, P. Gougis, S. Magnifico, S. Betuing, M. Pietri, J. Caboche, P. Vanhoutte, J.L. Viovy, B. Brugg, Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab on a Chip 11(21), 3663–3673 (2011)CrossRefGoogle Scholar
  22. R.B. Schoch, J. Han, P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)CrossRefGoogle Scholar
  23. R. Selvatici, M. Previati, S. Marino, L. Marani, S. Falzarano, I. Lanzoni, A. Siniscalchi, Sodium azide induced neuronal damage in vitro: evidence for non-apoptotic cell death. Neurochem. Res. 34, 909–916 (2009)CrossRefGoogle Scholar
  24. T.M. Squires, S.R. Quake, Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)CrossRefGoogle Scholar
  25. C. Szabo, H. Ischiropoulos, R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev., Drug Discov. 6(8), 662–680 (2007)CrossRefGoogle Scholar
  26. A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, A microfluidic culture platform for cns axonal injury, regeneration and transport. Nat. Methods 2(8), 599–605 (2005)CrossRefGoogle Scholar
  27. A.M. Taylor, S.W. Rhee, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Microfluidic multicompartment device for neuroscience research. Langmuir 19(5), 1551–1556 (2003)CrossRefGoogle Scholar
  28. D. Wallace, A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005)CrossRefGoogle Scholar
  29. C.J. Wang, X. Li, B. Lin, S. Shim, G.l. Ming, A. Levchenko, A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ecm molecules and diffusible guidance cues. Lab Chip 8, 227–237 (2008)CrossRefGoogle Scholar
  30. J. Wang, L. Ren, L. Li, W. Liu, J. Zhou, W. Yu, D. Tong, S. Chen, Microfluidics: a new cosset for neurobiology. Lab Chip 9, 644–652 (2009)CrossRefGoogle Scholar
  31. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alexander C. Barbati
    • 1
  • Cheng Fang
    • 2
  • Gary A. Banker
    • 2
  • Brian J. Kirby
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Jungers Center for Neurosciences ResearchOregon Health and Sciences UniversityPortlandUSA

Personalised recommendations