Biomedical Microdevices

, Volume 15, Issue 1, pp 49–61 | Cite as

Structural and molecular micropatterning of dual hydrogel constructs for neural growth models using photochemical strategies

  • Elaine L. Horn-Ranney
  • J. Lowry Curley
  • Gary C. Catig
  • Renee M. Huval
  • Michael J. Moore


Chemotactic and haptotactic cues guide neurite growth toward appropriate targets by eliciting attractive or repulsive responses from the neurite growth cones. Here we present an integrated system allowing both structural and molecular micropatterning in dual hydrogel 3D tissue culture constructs for directing in vitro neuronal growth via structural, immobilized, and soluble guidance cues. These tissue culture constructs were fabricated into specifiable geometries using UV light reflected from a digital micromirror device acting as a dynamic photomask, resulting in dual hydrogel constructs consisting of a cell growth-restrictive polyethylene glycol (PEG) boundary with a cell growth-permissive interior of photolabile α-carboxy-2-nitrobenzyl cysteine agarose (CNBC-A). This CNBC-A was irradiated in discrete areas and subsequently tagged with maleimide-conjugated biomolecules. Fluorescent microscopy showed biomolecule binding only at the sites of irradiation in CNBC-A, and confocal microscopy confirmed 3D binding through the depth of the construct. Neurite outgrowth studies showed contained growth throughout CNBC-A. The diffusion rate of soluble fluorescein-bovine serum albumin through the dual hydrogel construct was controlled by PEG concentration and the distance between the protein source and the agarose interior; the timescale for a transient protein gradient changed with these parameters. These findings suggest the dual hydrogel system is a useful platform for manipulating a 3D in vitro microenvironment with patterned structural and molecular guidance cues for modeling neural growth and guidance.


Digital micromirror device Photolithography Nerve guidance 3D Polyethylene glycol 


  1. A. Abbott, Nature 424, 870–872 (2003)CrossRefGoogle Scholar
  2. L. Almany, D. Seliktar, Biomaterials 26, 2467–2477 (2005)CrossRefGoogle Scholar
  3. A.P. Balgude, X. Yu, A. Szymanski, R.V. Bellamkonda, Biomaterials 22, 1077–1084 (2001)CrossRefGoogle Scholar
  4. R.V. Bellamkonda, J.P. Ranieri, P. Aebischer, J. Neurosci. Res. 41, 501–509 (1995)CrossRefGoogle Scholar
  5. A. Bernard, J.P. Renault, B. Michel, H.R. Bosshard, E. Delamarche, Adv. Mater. 12, 1067–1070 (2000)CrossRefGoogle Scholar
  6. N. Bhattacharjee, N.Z. Li, T.M. Keenan, A. Folch, Integr. Biol. 2, 669–679 (2010)CrossRefGoogle Scholar
  7. M.J. Bissell, D. Radisky, Nat. Rev. Cancer 1, 46–54 (2001)CrossRefGoogle Scholar
  8. S.J. Bryant, K.S. Anseth, J. Biomed. Mater. Res. 59, 63–72 (2002)CrossRefGoogle Scholar
  9. S.J. Bryant, K.S. Anseth, J. Biomed. Mater. Res. A 64A, 70–79 (2003)CrossRefGoogle Scholar
  10. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Science 294, 1708–1712 (2001)CrossRefGoogle Scholar
  11. J.L. Curley, M.J. Moore, J. Biomed. Mater. Res. A 99A, 532–543 (2011)CrossRefGoogle Scholar
  12. J.L. Curley, S.R. Jennings, M.J. Moore, J. Vis. Exp. 48, e2636 (2011)Google Scholar
  13. A. Desai, W.S. Kisaalita, C. Keith, Z.Z. Wu, Biosens. Bioelectron. 21, 1483–1492 (2006)CrossRefGoogle Scholar
  14. B. Dhariwala, E. Hunt, T. Boland, Tissue Eng. 10, 1316–1322 (2004)Google Scholar
  15. M.S. Hahn, L.J. Taite, J.J. Moon, M.C. Rowland, K.A. Ruffino, J.L. West, Biomaterials 27, 2519–2524 (2006)CrossRefGoogle Scholar
  16. M.J. Hansen, G.E. Dallal, J.G. Flanagan, Neuron 42, 717–730 (2004)CrossRefGoogle Scholar
  17. H.R. Irons, D.K. Cullen, N.P. Shapiro, N.A. Lambert, R.H. Lee, M.C. Laplaca, J. Neural Eng. 5, 333–341 (2008)CrossRefGoogle Scholar
  18. K. Kim, A. Yeatts, D. Dean, J.P. Fisher, Tissue Eng. Part B Rev. 16, 523–539 (2010)CrossRefGoogle Scholar
  19. A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Science 324, 59–63 (2009)CrossRefGoogle Scholar
  20. C.R. Kothapalli, E. van Veen, S. de Valence, S. Chung, I.K. Zervantonakis, F.B. Gertler, R.D. Kamm, Lab Chip 11, 497–507 (2011)CrossRefGoogle Scholar
  21. N. Kotzur, B. Briand, M. Beyerman, V. Hagan, Chem. Comm, 3255–3257 (2009)Google Scholar
  22. C.Y. Chang, B. Niblack, B. Walker, H. Bayley, Chem Biol 2, 391–400 (1995)CrossRefGoogle Scholar
  23. K.Y. Lee, D.J. Mooney, Chem. Rev. 101, 1869–1879 (2001)CrossRefGoogle Scholar
  24. K.N. Lee, D.S. Shin, Y.S. Lee, Y.K. Kim, J. Micromech. Microeng. 13, 18–25 (2003)CrossRefGoogle Scholar
  25. J. Lee, M.J. Cuddihy, N.A. Kotov, Tissue Eng. Part B Rev. 14, 61–86 (2008a)CrossRefGoogle Scholar
  26. S.H. Lee, J.J. Moon, J.L. West, Biomaterials 29, 2962–2968 (2008b)CrossRefGoogle Scholar
  27. K. Lehmann, M. Herklotz, M. Espig, T. Paumer, M. Nitschke, C. Werner, T. Pompe, Biomaterials 31, 8802–8809 (2010)CrossRefGoogle Scholar
  28. Y. Lu, G. Mapili, G. Suhali, S.C. Chen, K. Roy, J. Biomed. Mater. Res. A 77A, 396–405 (2006)CrossRefGoogle Scholar
  29. Y. Luo, M.S. Shoichet, Biomacromolecules 5, 2315–2323 (2004a)CrossRefGoogle Scholar
  30. Y. Luo, M.S. Shoichet, Nat. Mater. 3, 249–253 (2004b)CrossRefGoogle Scholar
  31. M.P. Lutolf, J.A. Hubbell, Nat. Biotechnol. 23, 47–55 (2005)CrossRefGoogle Scholar
  32. F.P.W. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen, D.W. Grijpma, Biomaterials 31, 6909–6916 (2010)CrossRefGoogle Scholar
  33. J.J. Moon, S.H. Lee, J.L. West, Biomacromolecules 8, 42–49 (2007)CrossRefGoogle Scholar
  34. S. Nemir, H.N. Hayenga, J.L. West, Biotechnol. Bioeng. 105, 636–644 (2010)CrossRefGoogle Scholar
  35. K.T. Nguyen, J.L. West, Biomaterials 23, 4307–4314 (2002)CrossRefGoogle Scholar
  36. P. Pan, H. Bayley, FEBS Lett. 405, 81–85 (1997)CrossRefGoogle Scholar
  37. N.A. Peppas, Y. Huang, M. Torres-Lugo, J.H. Ward, J. Zhang, Annu. Rev. Biomed. Eng. 2, 9–29 (2000)CrossRefGoogle Scholar
  38. A. Ribeiro, S. Vargo, E.M. Powell, J.B. Leach, Tissue Eng. Part A 18, 93–102 (2012)CrossRefGoogle Scholar
  39. W.J. Rosoff, J.S. Urbach, R.G. McAllister, L.J. Richards, G.J. Goodhill, Nat. Neurosci. 7, 678–682 (2004)CrossRefGoogle Scholar
  40. A.C. Von Philipsborn, S. Lang, A. Bernard, J. Loeschinger, C. David, D. Lehnert, M. Bastmeyer, F. Bonhoeffer, Nat. Protoc. 1, 1322–1328 (2006)CrossRefGoogle Scholar
  41. J.W. Walker, S.H. Gilbert, R.M. Drummond, M. Yamada, R. Sreekumar, R.E. Carraway, M. Ikebe, F.S. Fay, Proc Nat Acad Sci USA 95, 1568–1573 (1998)CrossRefGoogle Scholar
  42. S. Wang, C.W.P. Foo, A. Warrier, M.M. Poo, S.C. Heilshorn, X. Zhang, Biomed Microdev 11, 1127–1134 (2009)CrossRefGoogle Scholar
  43. V.M. Weaver, O.W. Petersen, F. Wang, C.A. Larabell, P. Briand, C. Damsky, M.J. Bissell, J. Cell Biol. 137, 231–245 (1997)CrossRefGoogle Scholar
  44. D.G. Wilkinson, Nat. Rev. Neurosci. 2, 155–164 (2001)CrossRefGoogle Scholar
  45. S.E. Williams, C.A. Mason, E. Herrera, Curr. Opin. Neurobiol. 14, 51–60 (2004)CrossRefGoogle Scholar
  46. T.W. Yu, C.I. Bargmann, Nat. Neurosci. 4, 1169–1176 (2001)CrossRefGoogle Scholar
  47. S. Zalipsky, J. M. Harris, in Poly(Ethylene Glycol), ed. by J. M. Harris, S. Zalipsky (American Chemical Society, Washington, DC, 1997), pp. 1–13Google Scholar
  48. J.M. Zhu, Biomaterials 31, 4639–4656 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elaine L. Horn-Ranney
    • 1
  • J. Lowry Curley
    • 1
  • Gary C. Catig
    • 1
  • Renee M. Huval
    • 1
  • Michael J. Moore
    • 1
  1. 1.Department of Biomedical EngineeringTulane UniversityNew OrleansUSA

Personalised recommendations