Biomedical Microdevices

, Volume 14, Issue 6, pp 1141–1148 | Cite as

Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures

  • Ju Hun Yeon
  • Dokyun Na
  • Kyungsun Choi
  • Seung-Wook Ryu
  • Chulhee Choi
  • Je-Kyun Park


Since most of the bioavailable drugs are impermeable through the blood-brain barrier (BBB), development of a rapid and reliable permeability assay system has been a challenge in drug discovery targeting central nervous system (CNS). Here, we designed a microfluidic device to monitor the drug permeability into the CNS. Human umbilical vein endothelial cells (HUVECs) were shortly (2 ~ 3 h) incubated with astrocyte-conditioned medium after being trapped on microholes in the microfluidic device and tested for chip-based permeability measurement of drugs. The measured permeability values were highly correlated with those measured by conventional in vitro methods and the brain uptake index representing the quantity of transported substances across the in vivo BBB of rats. Using the microfluidic device, we could easily monitor the effect of hydrogen peroxide on the trans-endothelial permeability, which are consistent with the finding that the same treatment disrupted the formation of tight junctions between endothelial cells. Considering relatively short period of time needed for endothelial cell culture and ability to monitor the BBB physiology continuously, we propose that this novel system can be used as an invaluable first-line tool for CNS-related drug development.


Blood–brain barrier Microfluidics Cell trapping Permeability assay 



This research was supported by a National Research Laboratory (NRL) Program grant (2011-0018607), a Converging Research Center Program grant (2011K000864) through the National Research Foundation and a grant (2009 K001282) from the Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology (MEST) of Republic of Korea.


  1. H.E. Abaci, R. Devendra, Q. Smith, S. Gerecht, G. Drazer, Biomed. Microdev. 14, 145 (2012)CrossRefGoogle Scholar
  2. N.J. Abbott, Drug Discov Today 1, 407 (2004)Google Scholar
  3. N.J. Abbott, L. Rönnbäck, E. Hansson, Nat. Rev. Neurosci. 7, 41 (2006)CrossRefGoogle Scholar
  4. T. Aoki, T. Sumii, T. Mori, X. Wang, E.H. Lo, Stroke 33, 2711 (2002)CrossRefGoogle Scholar
  5. I. Ay, J.W. Francis, H. Brown Jr., Brain Res. 1234, 198 (2008)CrossRefGoogle Scholar
  6. J. Barar, Y. Omidi, J. Biol. Sci. 8, 556 (2008)CrossRefGoogle Scholar
  7. C. Betzen, R. White, C.M. Zehendner, E. Pietrowski, B. Bender, H.J. Luhmann, C.R.W. Kuhlmann, Free Radic. Biol. Med. 47, 1212 (2009)CrossRefGoogle Scholar
  8. L. Cucullo, M.S. McAllister, K. Kight, L. Krizanac-Bengez, M. Marroni, M.R. Mayberg, K.A. Stanness, D. Janigro, Brain Res. 951, 243 (2002)CrossRefGoogle Scholar
  9. L. Fenart, V. Buee-Scherrer, L. Descamps, C. Duhem, M.-G. Poullain, R. Cecchelli, M.-P. Dehouck, Pharm. Res. 15, 993 (1998)CrossRefGoogle Scholar
  10. P.J. Gaillard, I.C.J. van der Sandt, L.H. Voorwinden, D. Vu, J.L. Nielsen, A.G. de Boer, D.D. Breimer, Pharm. Res. 17, 1198 (2000)CrossRefGoogle Scholar
  11. C.M. Garcia, D.C. Darland, L.J. Massingham, P.A. D’Amore, Dev Brain Res 152, 25 (2004)CrossRefGoogle Scholar
  12. M. Grassi, G. Cadelli, Int. J. Pharm. 229, 95 (2001)CrossRefGoogle Scholar
  13. I. Hubatsch, E.G.E. Ragnarsson, P. Artursson, Nat. Protoc. 2, 2111 (2007)CrossRefGoogle Scholar
  14. H.-S. Lee, K. Namkoong, D.-H. Kim, K.-J. Kim, Y.-H. Cheong, S.-S. Kim, W.-B. Lee, K.-Y. Kim, Microvasc. Res 68, 231 (2004)CrossRefGoogle Scholar
  15. S. Lundquist, M. Renftel, J. Brillault, L. Fenart, R. Cecchelli, M.-P. Dehouck, Pharm. Res. 19, 976 (2002)CrossRefGoogle Scholar
  16. S.H. Ma, L.A. Lepak, R.J. Hussain, W. Shain, M.L. Shuler, Lab Chip 5, 74 (2005)CrossRefGoogle Scholar
  17. S. Nakagawa, M.A. Deli, H. Kawaguchi, T. Shimizudani, T. Shimono, K. Kittel, K. Tanaka, M. Niwa, Neurochem. Int. 54, 253 (2009)CrossRefGoogle Scholar
  18. B. Öztas, E. Erkin, E. Dural, T. Isbir, Int. J. Neurosci. 105, 27 (2000)CrossRefGoogle Scholar
  19. T.G. Papaioannou, C. Stefanadis, Hell. J. Cardiol. 46, 9 (2005)Google Scholar
  20. W.M. Pardridge, D. Triguero, J. Yang, P.A. Cancilla, J. Pharmacol. Exp. Ther. 253, 884 (1990)Google Scholar
  21. T.H. Patel, S. Sprague, Q. Lai, D.F. Jimenez, C.M. Barone, Y. Dingb, Neurosci. Lett. 444, 222 (2008)CrossRefGoogle Scholar
  22. A. Prat, K. Biernacki, K. Wosik, J.P. Antel, Glia 36, 145 (2001)CrossRefGoogle Scholar
  23. P.B.L. Pun, J. Lu, S. Moochhala, Free Radic. Biol. Med. 43, 348 (2009)Google Scholar
  24. V. Siddharthan, Y.V. Kim, S. Liu, K.S. Kim, Brain Res 1147, 39 (2007)CrossRefGoogle Scholar
  25. K. Sobue, N. Yamamoto, K. Yoneda, M.E. Hodgson, K. Yamashiro, N. Tsuruoka, T. Tsuda, H. Katsuya, Y. Miura, K. Asai, T. Kato, Neurosci. Res. 35, 155 (1999)CrossRefGoogle Scholar
  26. K.A. Stanness, L.E. Westrum, E. Fornaciari, P. Mascagni, J.A. Nelson, S.G. Stenglein, T. Myers, D. Janigro, Brain Res 771, 329 (1997)CrossRefGoogle Scholar
  27. V.W. Tang, Biol Direct 1, 1 (2006)CrossRefGoogle Scholar
  28. H. van de Waterbeemd, G. Camenisch, G. Folkers, J.R. Chretien, O.A. Raevsky, J Drug Targeting 6, 151 (1998)CrossRefGoogle Scholar
  29. W.-L. Yeh, D.-Y. Lu, C.-J. Lin, H.-C. Liou, W.-M. Fu, Mol. Pharmacol. 72, 440 (2007)CrossRefGoogle Scholar
  30. J.H. Yeon, J.-K. Park, Anal. Chem. 81, 1944 (2009)CrossRefGoogle Scholar
  31. H. Yu, A. Adedoyin, Drug Discov today 8, 852 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Bio and Brain Engineering, KAISTYuseong-guRepublic of Korea
  2. 2.Department of Chemical and Biomolecular Engineering, KAISTYuseong-guRepublic of Korea
  3. 3.KAIST Institute for the BioCenturyYuseong-guRepublic of Korea
  4. 4.KAIST Institute for the NanoCenturyYuseong-guRepublic of Korea

Personalised recommendations