Biomedical Microdevices

, Volume 14, Issue 6, pp 1129–1140 | Cite as

Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells

  • R. Rodriguez-Rodriguez
  • X. Muñoz-Berbel
  • S. Demming
  • S. Büttgenbach
  • M. D. Herrera
  • A. Llobera
Article

Abstract

This paper presents a microfluidic device consisting of five parallel microchambers with integrated readout-grid for the screening of anti-proliferative activity of drugs in vascular smooth muscle cells (VSMC). A two-level SU-8 master was fabricated and replicated with poly(dimethylsiloxane), PDMS, using standard soft-lithographic methods. The relative small height (4–10 μm) of the integrated grid allowed the identification of single-cells or cell groups and the monitoring of their motility, morphology and size with time, without disturbing their proliferation pattern. This is of particular interest when considering VSMC which, apart of being crucial in the atherosclerotic process, do not proliferate in a single layer but in a non-homogenous hill and valley phenotype. The performance of the microfluidic device has been validated by comparison with conventional culturing methods, proving that the cell proliferation remains unaffected by the microchamber structure (with the integrated grid) and the experimental conditions. Finally, the microfluidic device was also used to evaluate the anti-proliferative activity of curcumin and colchicine in VSMC. With this cellular type, the anti-proliferative activity of curcumin (IC50 = 35 ± 5 μM) was found to be much lower than colchicine (IC50 = 3.2 ± 1.2 μM). These results demonstrate the good performance of the microfluidic device in the evaluation of the anti-proliferative activity (or cytotoxicity) of drugs.

Keywords

Microfluidic device Readout grid-integrated parallel microbioreactors Cell proliferation assay Vascular smooth muscle cells Antiproliferative drug delivery 

Notes

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n° 209243. The authors would like to acknowledge the Spanish Ministry of Economy and Competitivity for the award of a Ramón y Cajal contract and the German Research Foundation (DFG) for supporting this work in the framework of the Collaborative Research Group mikroPART FOR 856 (Microsystems for particulate life-science products). This work was also supported by funds from the Ministerio de Ciencia e Innovación (AGL2009-11559) and Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía (PAIDI, CTS178), Spain. Cell culture was performed in the Biology Service of the Centro de Investigación, Tecnología e Innovación of the University of Seville (CITIUS). Authors want to acknowledge Dr. Modesto Carballo (CITIUS) for scientific support and facilities.

References

  1. B. Bhattacharyya, D. Panda, S. Gupta, M. Banerjee, Med. Res. Rev. 28, 155 (2008)CrossRefGoogle Scholar
  2. M. Chen, M. Gupta, K. Cheung, Biomed. Microdevices 12, 647 (2010)CrossRefGoogle Scholar
  3. S. Demming, A. Llobera, R. Wilke, S. Buttgenbach, Sensor Actuat. B-Chem. 139, 166 (2009)CrossRefGoogle Scholar
  4. D.C. Duffy, J.C. Mcdonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  5. L. Genes, N. Tolan, M. Hulvey, R. Martin, D. Spence, Lab Chip 7, 1256 (2007)CrossRefGoogle Scholar
  6. P. Gross, E. Kartalov, A. Scherer, L. Weiner, J. Neurol. Sci. 252, 135 (2007)CrossRefGoogle Scholar
  7. K. Gupta, D. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, Lab Chip 10, 2019 (2010)CrossRefGoogle Scholar
  8. C. Hsieh, S. Huang, P. Wu, D. Shieh, G. Lee, Biomed. Microdevices 11, 903 (2009)CrossRefGoogle Scholar
  9. D. Ivanov, M. Philippova, R. Allenspach, P. Erne, T. Resink, Cardiovasc. Res. 64, 132 (2004)CrossRefGoogle Scholar
  10. T. Kraus, E. Verpoorte, V. Linder, W. Franks, A. Hierlemann, F. Heer, Lab Chip 6, 218 (2006)CrossRefGoogle Scholar
  11. A. Kunnumakkara, P. Anand, B. Aggarwal, Cancer Lett. 269, 199 (2008)CrossRefGoogle Scholar
  12. G. Kuttan, K. Kumar, C. Guruvayoorappan, R. Kuttan, Adv. Exp. Med. Biol. 595, 173 (2007)CrossRefGoogle Scholar
  13. J. Loukotova, L. Bacakova, J. Zicha, J. Kunes, Physiol. Res. 47, 501 (1998)Google Scholar
  14. A. Llobera, S. Demming, R. Wilke, S. Buttgenbach, Lab Chip 7, 1560 (2007)CrossRefGoogle Scholar
  15. S. Marasso, E. Giuri, G. Canavese, R. Castagna, M. Quaglio, I. Ferrante, D. Perrone, M. Cocuzza, Biomed. Microdevices 1 (2010)Google Scholar
  16. J. Martinez-Gonzalez, R. Rodriguez-Rodriguez, M. Gonzalez-Diez, C. Rodriguez, M. Herrera, V. Ruiz-Gutierrez, J. Nutr. 138, 443 (2008)Google Scholar
  17. J.C. Mcdonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)CrossRefGoogle Scholar
  18. E. Novik, T. Maguire, P. Chao, K. Cheng, M. Yarmush, Biochem. Pharmacol. 79, 1036 (2010)CrossRefGoogle Scholar
  19. H. Pae, G. Jeong, S. Jeong, H. Kim, S. Kim, Y. Kim, Korean J. Biochem. 39, 267 (2007)Google Scholar
  20. L. Qin, Y. Yang, Q. Tuo, B. Zhu, L. Chen, L. Zhang, Biochem. Bioph. Res. Co. 379, 277 (2009)CrossRefGoogle Scholar
  21. S. Redondo, E. Ruiz, E. Padilla, A. Gordillo-Moscoso, T. Tejerina, Eur. J. Pharmacol. 556, 36 (2007)CrossRefGoogle Scholar
  22. R. Ross, New Engl. J. Med. 340, 1929 (1999)CrossRefGoogle Scholar
  23. R. Samarakoon, P. Higgins, J. Cell Sci. 115, 3093 (2002)Google Scholar
  24. O. Stepien, J. Gogusev, D. Zhu, L. Iouzalen, T. Herembert, T. Drueke, J. Cardiovasc. Pharm. 31, 786 (1998)CrossRefGoogle Scholar
  25. E. Taylor, J. Cell Biol. 25, 145 (1965)CrossRefGoogle Scholar
  26. J. Wang, L. Ren, L. Li, W. Liu, J. Zhou, W. Yu, Lab Chip 9, 644 (2009)CrossRefGoogle Scholar
  27. G. Whitesides, Nature 442, 368 (2006)CrossRefGoogle Scholar
  28. G. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. Ingber, Annu. Rev. Biomed. Eng. 3, 335 (2001)CrossRefGoogle Scholar
  29. D. Wlodkowic, S. Faley, M. Zagnoni, J. Wikswo, J. Cooper, Anal. Chem. 81, 5517 (2009)CrossRefGoogle Scholar
  30. I. Wong, S. Atsumi, W. Huang, T. Wu, T. Hanai, M. Lam, Lab Chip 10, 2710 (2010)CrossRefGoogle Scholar
  31. E. Young, C. Simmons, Lab Chip 10, 143 (2010)CrossRefGoogle Scholar
  32. Y. Yu, H. Lin, Nutr. Metab. Cardiovas. 20, 125 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • R. Rodriguez-Rodriguez
    • 1
  • X. Muñoz-Berbel
    • 2
  • S. Demming
    • 3
  • S. Büttgenbach
    • 3
  • M. D. Herrera
    • 1
  • A. Llobera
    • 2
    • 3
  1. 1.School of Pharmacy, Department of PharmacologyUniversidad de SevillaSevillaSpain
  2. 2.Instituto Nacional de Microelectrònica (IMB-CNM, CSIC)BarcelonaSpain
  3. 3.Institut für MikrotechnikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations