Biomedical Microdevices

, Volume 14, Issue 5, pp 947–954 | Cite as

Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources

  • O. OsmanEmail author
  • L. F. Zanini
  • M. Frénéa-Robin
  • F. Dumas-Bouchiat
  • N. M. Dempsey
  • G. Reyne
  • F. Buret
  • N. Haddour


Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤106 T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).


Iron oxide nanoparticles Magnetophoresis Endocytosis Micromagnet array 



The authors thank the Région Rhône-Alpes (Cluster Micro Nano) for the financial support provided including the PhD grant of O. Osman. This work also benefited from financial support of the French National Research Agency (ANR- 08-CESA-013-01), which is gratefully acknowledged. The authors also thank Agnes Basseville for her technical support with confocal imaging, Laure Franqueville for her valuable advice and guidance concerning cell culture, and Elisabeth Errazuriz-Cerda for TEM preparation and observation.


  1. M. Arruebo, R. Fernández-pacheco, M.R. Ibarra, J. Santamaría, Review Literature And Arts Of The Americas 2, 22 (2007)Google Scholar
  2. C. Billotey, C. Wilhelm, M. Devaud, J.C. Bacri, J. Bittoun, F. Gazeau, Magn. Reson. Med. 49, 646 (2003)CrossRefGoogle Scholar
  3. A.K. Bouzier-Sore, E. Ribot, V. Bouchaud, S. Miraux, E. Duguet, S. Mornet, G. Clofent-Sanchez, J.M. Franconi, NMR Biomedecine. 23, 88 (2010)Google Scholar
  4. S.D. Conner, S.L. Schmid, Nature 422, 37 (2003)CrossRefGoogle Scholar
  5. N.M. Dempsey, A. Walther, F. May, D. Givord, K. Khlopkov, O. Gutfleisch, Appl. Phys. Lett. 90, 92509 (2007)CrossRefGoogle Scholar
  6. F. Dumas-Bouchiat, L.F. Zanini, M. Kustov, N.M. Dempsey, R. Grechishkin, K. Hasselbach, J.C. Orlianges, C. Champeaux, A. Catherinot, D. Givors, Appl. Phys. Lett. 96, 102511 (2010)CrossRefGoogle Scholar
  7. R.M. Grechishkin, S. Chigirinsky, M. Gusev, O. Cugat, N.M. Dempsey, in Magnetic Nanostructures in Modern Technology, eds. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini (Springer, Dordrecht, 2007), pp. 195–224Google Scholar
  8. R. Hergt, S. Dutz, R. Müller, M. Zeisberger, J. Phys. Condens. Matter 18, 2919 (2006)CrossRefGoogle Scholar
  9. A. Hofmann, D. Wenzel, U.M. Becher, D.F. Freitag, A.M. Klein, D. Eberbeck, M. Schulte, K. Zimmerman, C. Bergemann, B. Gleich, W. Roell, T. Weyh, L. Trahms, G. Nickenig, B.K. Fleischmann, A. Pfeifer, Proc. Natl. Acad. Sci. U. S. A. 106, 44 (2009)CrossRefGoogle Scholar
  10. A. Ito, H. Jitsunobu, Y. Kawabe, M. Kamihira, J. Biosci. Bioeng. 104, 371 (2007)CrossRefGoogle Scholar
  11. Y. Jing, N. Mal, P.S. Williams, M. Mayorga, M.S. Penn, J.J. Chalmers, M. Zborowski, The Federation of American Societies for Experimental Biology 22, 4239 (2008)CrossRefGoogle Scholar
  12. A. Kumar, V. Fal-Miyar, J.A. Garcia, A. Cerdeira, S. Mohapatra, H. Srikanth, G.V. Kurlyandskaya, Appl. Phys. Lett. 91, 143902 (2007)CrossRefGoogle Scholar
  13. M. Kustov, P. Laczkowski, D. Hykel, K. Hasselbach, F. Dumas-Bouchiat, D. O'Brien, P. Kauffmann, R. Grechishkin, D. Givord, G. Reyne, O. Cugat, N.M. Dempsey, J. Appl. Phys. 108, 63914 (2010)CrossRefGoogle Scholar
  14. L. Matuszewski, T. Persigehl, A. Wall, W. Schwindt, B. Tombach, M. Fobker, C. Poremba, W. Ebert, W. Heindel, C. Bremer, Radiology 235, 155 (2005)CrossRefGoogle Scholar
  15. Q. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Journal of Physics D: Applied Physics 36, 167 (2003)CrossRefGoogle Scholar
  16. A. Petri-Fink, B. Steitz, A. Finka, J. Salaklang, H. Hofmann, European journal of pharmaceutics and biopharmaceutics 68, 129 (2008)CrossRefGoogle Scholar
  17. N. Pamme, C. Wilhelm, Lab on a chip 6, 974 (2006)CrossRefGoogle Scholar
  18. J. Pivetal, O. Osman, C. Vezy, M. Frénéa-Robin, F. Dumas-Bouchiat, N.M. Dempsey, D. Givord, P. Simonet, F. Buret, G. Reyne, N. Haddour, AIP Conf. Proc. 131, 192 (2010)CrossRefGoogle Scholar
  19. S. Prijic, J. Scancar, R. Romih, M. Cemazar, V.B. Bregar, A. Znidarsic, G. Sersa, J. Membr. Biol. 236, 167 (2010)CrossRefGoogle Scholar
  20. D. Robert, N. Pamme, H. Conjeaud, F. Gazeau, A. Iles, C. Wilhelm, Lab on a chip 11, 1902 (2011)CrossRefGoogle Scholar
  21. W.J. Rogers, C.H. Meyer, C.M. Kramer, Nature clinical practice. Cardiovascular Medicine 3, 554 (2006)Google Scholar
  22. C. Sun, J.S.H. Lee, M. Zhang, Advanced Drug Delivery Reviews 60, 1252 (2008)CrossRefGoogle Scholar
  23. C. Vézy, N. Haddour, N.M. Dempsey, F. Dumas-Bouchiat, M. Frénéa-Robin, Micro & Nano Letters 6, 871 (2011)CrossRefGoogle Scholar
  24. A. Walther, C. Marcoux, B. Desloges, R. Grechishkin, D. Givord, N.M. Dempsey, J. Magn. Magn. Mater. 321, 590 (2009)CrossRefGoogle Scholar
  25. C. Wilhelm, F. Gazeau, J. Roger, J.N. Pons, M.F. Salis, R. Perzynski, J.C. Bacri, Physical Review E 65, 1 (2002)CrossRefGoogle Scholar
  26. C. Wilhelm, C. Billotey, J. Roger, J.N. Pons, J.C. Bacri, F. Gazeau, Biomaterials 24, 1001 (2003)CrossRefGoogle Scholar
  27. M. Yanase, M. Shinkai, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi, Japanese Journal of Cancer Research 89, 463 (1998)CrossRefGoogle Scholar
  28. V. Zablotskii, O. Lunov, A. Dejneka, L. Jastrabik, T. Polyakova, T. Syrovets, Th Simmet, Appl. Phys. Lett. 99, 183701 (2011)CrossRefGoogle Scholar
  29. L.F. Zanini, N.M. Dempsey, D. Givord, G. Reyne, F. Dumas-Bouchiat, Appl. Phys. Lett. 99, 232504 (2011)CrossRefGoogle Scholar
  30. L.F. Zanini, O. Osman, M. Frenea-Robin, N. Haddour, D. Givord, N.M. Dempsey, G. Reyne, F. Dumas-Bouchiat, J. Appl. Phys. 111, 07B312 (2012)Google Scholar
  31. M. Zborowski, J.J. Chalmers, Anal. Chem. 83, 8050 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • O. Osman
    • 1
    Email author
  • L. F. Zanini
    • 2
    • 3
  • M. Frénéa-Robin
    • 1
  • F. Dumas-Bouchiat
    • 2
  • N. M. Dempsey
    • 2
  • G. Reyne
    • 3
  • F. Buret
    • 1
  • N. Haddour
    • 1
  1. 1.Ampère Laboratory, CNRS - Université Claude Bernard Lyon 1- Ecole Centrale de LyonEcullyFrance
  2. 2.Institut Néel, CNRS-UJFGrenobleFrance
  3. 3.G2Elab, Electrical Engineering LaboratorySt Martin d’HèresFrance

Personalised recommendations