Advertisement

Biomedical Microdevices

, Volume 14, Issue 5, pp 863–872 | Cite as

Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues

  • Jia An
  • Chee Kai Chua
  • Kah Fai Leong
  • Chih-Hao Chen
  • Jyh-Ping Chen
Article

Abstract

Fabrication of aligned microfiber scaffolds is critical in successful engineering of anisotropic tissues such as tendon, ligaments and nerves. Conventionally, aligned microfiber scaffolds are two dimensional and predominantly fabricated by electrospinning which is solvent dependent. In this paper, we report a novel technique, named microfiber melt drawing, to fabricate a bundle of three dimensionally aligned polycaprolactone microfibers without using any organic solvent. This technique is simple yet effective. It has been demonstrated that polycaprolactone microfibers of 10 μm fiber diameter can be directly drawn from a 2 mm orifice. Orifice diameter, temperature and take-up speed significantly influence the final linear density and fiber diameter of the microfibers. Mechanical test suggests that mechanical properties such as stiffness and breaking force of microfiber bundles can be easily adjusted by the number of fibers. In vitro study shows that these microfibers are able to support the proliferation of human dermal fibroblasts over 7 days. In vivo result of Achilles tendon repair in a rabbit model shows that the microfibers were highly infiltrated by tendon tissue as early as in 1 month, besides, the repaired tendon have a well-aligned tissue structure under the guidance of aligned microfibers. However whether these three dimensionally aligned microfibers can induce three dimensionally aligned cells remains inconclusive.

Keywords

Solvent-free Three dimensionally aligned microfibers Polycaprolactone Scaffold Tendon 

Notes

Acknowledgment

This project is supported by Nanyang Technological University.

References

  1. J. An, C. K. Chua, K. F. Leong, 2010 IEEE Conference on Robotics, Automation and Mechatronics, RAM 2010. 37, (2010)Google Scholar
  2. E.R. Balmayor, K. Tuzlakoglu, H.S. Azevedo, R.L. Reis, Acta Biomaterialia 5, 1035 (2009)CrossRefGoogle Scholar
  3. C.A. Bashur, L.A. Dahlgren, A.S. Goldstein, Biomaterials 27, 5681 (2006)CrossRefGoogle Scholar
  4. A. Charuchinda, R. Molloy, J. Siripitayananon, N. Molloy, M. Sriyai, Polym. Int. 52, 1175 (2003)CrossRefGoogle Scholar
  5. S.Y. Chew, R. Mi, A. Hoke, K.W. Leong, Biomaterials 29, 653 (2008)CrossRefGoogle Scholar
  6. R. R. Duling, R. B. Dupaix, N. Katsube, J. Lannutti, J. Biomech. Eng.-T. ASME 130, (2008)Google Scholar
  7. H. Ebata, K. Toshima, S. Matsumura, Biomacromolecules 1, 511 (2000)CrossRefGoogle Scholar
  8. J.M. Estelles, A. Vidaurre, J.M.M. Duenas, I.C. Cortazar, J Mater Sci Mater Med 19, 189 (2008)CrossRefGoogle Scholar
  9. I. Frydrych, Text. Res. J. 65, 513 (1995)CrossRefGoogle Scholar
  10. Z. Gan, Q. Liang, J. Zhang, X. Jing, Polym. Degrad. Stab. 56, 209 (1997)CrossRefGoogle Scholar
  11. C.B. Howard, I. Winston, W. Bell, J. Bone Joint Surg. Ser. B 66, 206 (1984)Google Scholar
  12. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55, 203 (2001)CrossRefGoogle Scholar
  13. C.M. Hwang, A. Khademhosseini, Y. Park, K. Sun, S.H. Lee, Langmuir 24, 6845 (2008)CrossRefGoogle Scholar
  14. C. M. Hwang, Y. Park, J. Y. Park, K. Lee, K. Sun, A. Khademhosseini, S. H. Lee, Biomed. Microdevices 1, (2009)Google Scholar
  15. D.H.R. Jenkins, I.W. Forster, B. McKibbin, Z.A. Ralis, J. Bone Joint Surg. Ser. B 59, 53 (1977)Google Scholar
  16. B.S. Jha, R.J. Colello, J.R. Bowman, S.A. Sell, K.D. Lee, J.W. Bigbee, G.L. Bowlin, W.N. Chow, B.E. Mathern, D.G. Simpson, Acta Biomaterialia 7, 203 (2011)CrossRefGoogle Scholar
  17. K.F. Leong, F.E. Wiria, C.K. Chua, S.H. Li, Bio-Med. Mater. Eng. 17, 147 (2007)Google Scholar
  18. M.F. Leong, M.Z. Rasheed, T.C. Lim, K.S. Chian, J. Biomed. Mater. Res. A 91, 231 (2009)Google Scholar
  19. M.E. Manwaring, J.F. Walsh, P.A. Tresco, Biomaterials 25, 3631 (2004)CrossRefGoogle Scholar
  20. J.G. Merrell, S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, L.S. Nair, Clin. Exp. Pharmacol. Physiol. 36, 1149 (2009)CrossRefGoogle Scholar
  21. R.P. Nachane, K.R. Krishna Iyer, Text. Res. J. 50, 639 (1980)CrossRefGoogle Scholar
  22. H.W. Ouyang, J.C.H. Goh, A. Thambyah, S.H. Teoh, E.H. Lee, Tissue Eng 9, 431 (2003)CrossRefGoogle Scholar
  23. H. W. Ouyang, S. L. Toh, J. C. H. Goh, T. E. Tay, P. T. Nhan, Transactions - 7th World Biomaterials Congress. 894 (2004)Google Scholar
  24. G.D. Parfitt, Powder Technol. 17, 157 (1977)CrossRefGoogle Scholar
  25. D.H. Reneker, W. Kataphinan, A. Theron, E. Zussman, A.L. Yarin, Polymer 43, 6785 (2002)CrossRefGoogle Scholar
  26. J.L. Ricci, A.G. Gona, H. Alexander, J.R. Parsons, J. Biomed. Mater. Res. 18, 1073 (1984)CrossRefGoogle Scholar
  27. S. Sahoo, H. W. Ouyang, J. C. H. Goh, T. E. Tay, S. L. Toh, Proceedings of SPIE - The International Society for Optical Engineering. 5852 PART II, 658 (2005)Google Scholar
  28. M. Sato, M. Maeda, H. Kurosawa, Y. Inoue, Y. Yamauchi, H. Iwase, J. Orthop. Sci. 5, 256 (2000)CrossRefGoogle Scholar
  29. S. Saxena, Geeta, B. Gupta, J. Hilborn, Processing of polycaprolactone filaments as scaffold materials for tissue engineering. in TERMIS EU 2008 Porto Meeting June 22–26, 2008 Porto Congress Center–Alfândega Portugal. Tissue Engineering Part A, vol. 14 (2008), p. 899Google Scholar
  30. G. Sekosan, N. Vasanthan, J. Polymer Sci., Part B: Polymer Phys. 48, 202 (2010)CrossRefGoogle Scholar
  31. L. Shor, S. Güçeri, X. Wen, M. Gandhi, W. Sun, Biomaterials 28, 5291 (2007)CrossRefGoogle Scholar
  32. H.J. Sung, C. Meredith, C. Johnson, Z.S. Galis, Biomaterials 25, 5735 (2004)CrossRefGoogle Scholar
  33. C. Vaquette, J.J. Cooper-White, Acta Biomaterialia 7, 2544 (2011)CrossRefGoogle Scholar
  34. J.H. Wang, F. Jia, T.W. Gilbert, S.L.Y. Woo, J. Biomech. 36, 97 (2003)CrossRefGoogle Scholar
  35. X. Wei, C. Gong, M. Gou, S. Fu, Q. Guo, S. Shi, F. Luo, G. Guo, L. Qiu, Z. Qian, Int. J. Pharm. 381, 1 (2009)CrossRefGoogle Scholar
  36. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817 (2005)CrossRefGoogle Scholar
  37. M.R. Williamson, A.G.A. Coombes, Biomaterials 25, 459 (2004)CrossRefGoogle Scholar
  38. F.E. Wiria, K.F. Leong, C.K. Chua, Y. Liu, Acta Biomaterialia 3, 1 (2007)CrossRefGoogle Scholar
  39. Z. Yin, X. Chen, J.L. Chen, W.L. Shen, T.M. Hieu Nguyen, L. Gao, H.W. Ouyang, Biomaterials 31, 2163 (2010)CrossRefGoogle Scholar
  40. H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, Biomaterials 24, 2077 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jia An
    • 1
  • Chee Kai Chua
    • 1
  • Kah Fai Leong
    • 1
  • Chih-Hao Chen
    • 2
  • Jyh-Ping Chen
    • 3
  1. 1.School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Plastic and Cosmetic SurgeryChang Gung Memorial HospitalTaoyuanTaiwan
  3. 3.Department of Chemical and Materials EngineeringChang Gung UniversityTaoyuanTaiwan

Personalised recommendations