Biomedical Microdevices

, Volume 14, Issue 4, pp 791–797 | Cite as

A perfusable microfluidic device with on-chip total internal reflection fluorescence microscopy (TIRFM) for in situ and real-time monitoring of live cells

  • Ryuji Yokokawa
  • Yuko Kitazawa
  • Kyohei Terao
  • Atsuhito Okonogi
  • Isaku Kanno
  • Hidetoshi Kotera
Article

Abstract

A microfluidic device integrated with a Total Internal Reflection (TIR)-based chip for cell observation and analysis was developed. This integrated device enables in situ Total Internal Reflection Fluorescence Microscopy (TIRFM) on adherent cells cultured under continuous medium perfusion. This TIR-based chip, allows TIRFM to be easily performed on cells without the assembly of complicated optical components and cell culture chambers. The integrated device was evaluated by tracking the movement of fluorescent beads and monitoring the location of insulin granules in mouse pancreatic β-cells. This system offers higher signal-to-noise (S/N) ratio than epi-fluorescence microscopy (EPIFM), and comparable image quality to commercial TIRFM systems when imaging insulin granules. We also detected repetitive changes in intracellular Ca2+ concentration in MIN6-m9 cells stimulated with KCl, which demonstrates quick perfusion for cell analysis while maintaining high S/N ratio.

Keywords

Total internal reflection fluorescent microscopy (TIRFM) Cell analysis Microfluidics 

Notes

Acknowledgment

This research was partially supported by Core Research for Evolutional Science & Technology (CREST), Japan Science and Technology Agency (JST), Japan. We thank Dr. N. C. H. Le with CSIRO Materials Science and Engineering, Australia for useful advice, Prof. S. Seino with Kobe University for providing MIN6-m9 cells, Prof. S. Nagamatsu with Kyorin University, Japan for providing GFP-labeled insulin vector, and Prof. H. Yokota with Kyoto University for the use of Nikon TIRFM system.

References

  1. D. Axelrod, Total internal reflection fluorescence microscopy. Annu. Rev. Biophys. Bioengs. 13, 247–268 (1984)CrossRefGoogle Scholar
  2. J.G. Burchfield, J.A. Lopez, K. Mele, P. Vallotton, W.E. Hughes, Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic 11(4), 429–439 (2010)CrossRefGoogle Scholar
  3. D.D. Carlo, L.Y. Wu, L.P. Lee, Dynamic single cell culture array. Lab on a Chip 6(11), 1445–1449 (2006)CrossRefGoogle Scholar
  4. N. Chronis, L.P. Lee, Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall. Lab on a Chip 4(2), 125–130 (2004)CrossRefGoogle Scholar
  5. P.S. Dittrich, A. Manz, Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal. Bioanal. Chem. 382(8), 1771–1782 (2005)CrossRefGoogle Scholar
  6. C.A. Goubko, X. Cao, Patterning multiple cell types in co-cultures: a review. Mater. Sci. Eng. C 29(6), 1855–1868 (2009)CrossRefGoogle Scholar
  7. H.M. Grandin, B. Städler, M. Textor, J. Vörös, Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens. Bioelectron. 21(8), 1476–1482 (2006)CrossRefGoogle Scholar
  8. W.H. Huang, F. Ai, Z.L. Wang, J.K. Cheng, Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J. Chrom. B Anal. Technol. Biomed. Life Sci. 866(1–2), 104–122 (2008)CrossRefGoogle Scholar
  9. J.P. Hughes, S. Rees, S.B. Kalindjian, K.L. Philpott, Principles of early drug discovery. Br. J. Pharmacol. 162(6), 1239–1249 (2011)CrossRefGoogle Scholar
  10. L.F. Kang, B.G. Chung, R. Langer, A. Khademhosseini, Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov. Today. 13(1–2), 1–13 (2008)CrossRefGoogle Scholar
  11. S.M. Langelier, E. Livak-Dahl, A.J. Manzo, B.N. Johnson, N.G. Walter, M.A. Burns, Flexible casting of modular self-aligning microfluidic assembly blocks. Lab on a Chip 11(9), 1679–1687 (2011)CrossRefGoogle Scholar
  12. N.C.H. Le, D.V. Dao, R. Yokokawa, J. Wells, S. Sugiyama, Design, simulation and fabrication of a total internal reflection (TIR)-based chip for highly sensitive fluorescent imaging. J. Micromech. Microeng. 17(6), 1139–1146 (2007)CrossRefGoogle Scholar
  13. S. Lee, B.H. Chung, S.H. Kang, Dual-color prism-type TIRFM system for direct detection of single-biomolecules on nanoarray biochips. Curr. Appl. Phys. 8(6), 700–705 (2008)CrossRefGoogle Scholar
  14. K. Minami, H. Yano, T. Miki, K. Nagashima, C.Z. Wang, H. Tanaka, J.I. Miyazaki, S. Seino, Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. Am. J. Physiol. Endocrinol. Metab. 279(4), E773–E781 (2000)Google Scholar
  15. M. Ohara-Imaizumi, Y. Nakamichi, T. Tanaka, H. Ishida, S. Nagamatsu, Imaging exocytosis of single insulin secretory granules with evanescent wave microscopy - distinct behavior of granule motion in biphasic insulin release. J. Biol. Chem. 277(6), 3805–3808 (2002)CrossRefGoogle Scholar
  16. M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic ƒÀ-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat ƒÀ-cells. Biochem. J. 381(Pt 1), 13 (2004)Google Scholar
  17. H. Schneckenburger, Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol. 16(1), 13–8 (2005)CrossRefGoogle Scholar
  18. B.R. Schudel, M. Tanyeri, A. Mukherjee, C.M. Schroeder, P.J.A. Kenis, Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab on a Chip 11(11), 1916–1923 (2011)CrossRefGoogle Scholar
  19. R.M. Shaw, A.J. Fay, M.A. Puthenveedu, M. von Zastrow, Y.N. Jan, L.Y. Jan, Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128(3), 547–560 (2007)CrossRefGoogle Scholar
  20. H. Shih-Hao, T. Fan-Gang, Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing. J. Micromech. Microeng. 15(12), 2235 (2005)CrossRefGoogle Scholar
  21. A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Microfluidic control of cell pairing and fusion. Nat. Meth. 6(2), 147–152 (2009)CrossRefGoogle Scholar
  22. D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell Imaging. Science 300(5616), 82–86 (2003)CrossRefGoogle Scholar
  23. M. Suzuki, T. Yasukawa, H. Shiku, T. Matsue, Negative dielectrophoretic patterning with different cell types. Biosens. Bioelectron. 24(4), 1043–1047 (2008)CrossRefGoogle Scholar
  24. J. Wang, N. Bao, L.L. Paris, R.L. Geahlen, C. Lu, Total internal reflection fluorescence flow cytometry. Anal. Chem. 80(24), 9840–9844 (2008)CrossRefGoogle Scholar
  25. J. Wang, B. Fei, R.L. Geahlen, C. Lu, Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. Lab on a Chip 10(20), 2673–2679 (2010)CrossRefGoogle Scholar
  26. C.B. Wollheim, P. Maechler, Beta-cell mitochondria and insulin secretion - messenger role of nucleotides and metabolites. Diabetes 51, S37–S42 (2002)CrossRefGoogle Scholar
  27. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)CrossRefGoogle Scholar
  28. H.M. Yu, I. Meyvantsson, I.A. Shkel, D.J. Beebe, Diffusion dependent cell behavior in microenvironments. Lab on a Chip 5(10), 1089–1095 (2005)CrossRefGoogle Scholar
  29. C.M. Zettner, M. Yoda, Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluid. 34(1), 115–121 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ryuji Yokokawa
    • 1
    • 2
  • Yuko Kitazawa
    • 1
    • 2
  • Kyohei Terao
    • 2
    • 3
  • Atsuhito Okonogi
    • 1
    • 2
  • Isaku Kanno
    • 1
  • Hidetoshi Kotera
    • 1
    • 2
  1. 1.Department of MicroengineeringKyoto UniversityKyotoJapan
  2. 2.Core Research for Evolutional Science & Technology (CREST)Japan Science and Technology Agency (JST)SaitamaJapan
  3. 3.Department of Intelligent Mechanical Systems EngineeringKagawa UniversityKagawaJapan

Personalised recommendations