Advertisement

Biomedical Microdevices

, Volume 14, Issue 4, pp 721–728 | Cite as

Multiparameter evaluation of the longevity in C. elegans under stress using an integrated microfluidic device

  • Hui Wen
  • Weiwei Shi
  • Jianhua QinEmail author
Article

Abstract

Caenorhabditis elegans (C. elegans) is an excellent model organism for the study of aging and longevity. In this work, we presented a microfluidic approach for the evaluation of longevity in C. elegans under stress. The microfluidic device integrated multiple microvalves with parallel channels, which enabled the long-term culture and flexible manipulation of C. elegans in real-time. The utility of the device was demonstrated by characterizing the lifespan, mobility behavior and fluorescence expression of oxidative stress in mutant strain CL2166 simultaneously at single animal resolution. A certain dose of polydatin was found to enable the extension of mean lifespan of CL2166 for the first time, and the prolonged longevity activity was possibly mediated by the protective response to oxidative stress, indicating the promising role of polydatin involved in aging process. The device is simple to operate, easy for real-time imaging and multiparatemer evaluations in parallel, providing the powerful platform for drug evaluation/screening in highthroughput format.

Keywords

Microfluidic C. elegans Longevity Polydatin 

Notes

Acknowledgments

This research was supported by the National Nature Science Foundation of China (No.20635030 and 90713014), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-H18), and Instrument Research and Development Program of the Chinese Academy of Sciences (YZ200908).

References

  1. P. Allen, A. Sgro, D. Chao, B. Doepker, J. Scottedgar, K. Shen, D. Chiu, J. Neurosci. Meth. 173, 1 (2008)CrossRefGoogle Scholar
  2. D. Barsyte, D.A. Lovejoy, G.J. Lithgow, FASEB J. 15, (2001).Google Scholar
  3. T.M. Bass, D. Weinkove, K. Houthoofd, D. Gems, L. Partridge, Mech. Ageing Dev. 128, 10 (2007)CrossRefGoogle Scholar
  4. S. Brenner, Genetics 77, 1 (1974)Google Scholar
  5. S.H. Chalasani, N. Chronis, M. Tsunozaki, J.M. Gray, D. Ramot, M.B. Goodman, C.I. Bargmann, Nature 450, 7166 (2007)CrossRefGoogle Scholar
  6. N. Chronis, M. Zimmer, C.I. Bargmann, Nat. Methods 4, 9 (2007)CrossRefGoogle Scholar
  7. K. Chung, H. Lu, Lab Chip 9, 19 (2009)Google Scholar
  8. K. Chung, M.M. Crane, H. Lu, Nat. Methods 5, 7 (2008)CrossRefGoogle Scholar
  9. J.J. Collins, K. Evason, K. Kornfeld, Exp. Gerontol. 41, 10 (2006)CrossRefGoogle Scholar
  10. M.M. Crane, K. Chung, H. Lu, Lab Chip 9, 1 (2009)CrossRefGoogle Scholar
  11. S. Fabris, F. Momo, G. Ravagnan, R. Stevanato, Biophys. Chem. 135, 1–3 (2008)CrossRefGoogle Scholar
  12. D. Gems, J. Anat. 197 (2000)Google Scholar
  13. S.X. Guo, F. Bourgeois, T. Chokshi, N.J. Durr, M.A. Hilliard, N. Chronis, A. Ben-Yakar, Nat. Meth. 5, 6 (2008)Google Scholar
  14. H. Harada, M. Kurauchi, R. Hayashi, T. Eki, Ecotoxicol Environ Saf 66, 3 (2007)CrossRefGoogle Scholar
  15. S.E. Hulme, S.S. Shevkoplyas, A.P. McGuigan, J. Apfeld, W. Fontana, G.M. Whitesides, Lab Chip 10, 5 (2010)CrossRefGoogle Scholar
  16. N. Ishii, N. Senoo-Matsuda, K. Miyake, K. Yasuda, T. Ishii, P.S. Hartman, S. Furukawa, Mech. Ageing Dev. 125, 1 (2004)CrossRefGoogle Scholar
  17. C. Kenyon, Cell 120, 4(2005).CrossRefGoogle Scholar
  18. J. Krajniak, H. Lu, Lab Chip 10, 14 (2010)CrossRefGoogle Scholar
  19. B. Leiers, A. Kampkötter, C.G. Grevelding, C.D. Link, T.E. Johnson, K. Henkle-Dührsen, Free Radic. Biol. Med. 34, 11 (2003)CrossRefGoogle Scholar
  20. C.D. Link, Exp. Gerontol. 41, 10 (2006)CrossRefGoogle Scholar
  21. H. Ma, L. Jiang, W. Shi, J. Qin, B. Lin, Biomicrofluidics 3, 4 (2009)CrossRefGoogle Scholar
  22. J.C. McDonald, D. C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides, Electrophoresis 21, (2000)Google Scholar
  23. A. Olsen, Ann. New York Acad. Sci. 1067, 1 (2006)CrossRefGoogle Scholar
  24. J. Qin, A.R. Wheeler, Lab Chip 7, 2 (2007)CrossRefGoogle Scholar
  25. C.B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, M.F. Yanik, Proc. Natl. Acad. Sci. 104, 35 (2007)Google Scholar
  26. W. Shi, J. Qin, N. Ye, B. Lin, Lab Chip 8, 9 (2008)Google Scholar
  27. W. Shi, H. Wen, Y. Lu, Y. Shi, B. Lin, J. Qin, Lab Chip 10, 21 (2010)Google Scholar
  28. J.R. Vanfleteren, B.P. Braeckman, Neurobiol. Aging 20, (1999)Google Scholar
  29. M. Viswanathan, S.K. Kim, A. Berdichevsky, L. Guarente, Dev. Cell 9, 5 (2005)CrossRefGoogle Scholar
  30. A.R. White, G. Multhaup, D. Galatis, W.J. McKinstry, M.W. Parker, R. Pipkorn, K. Beyreuther, C.L. Masters, R. Cappai, J. Neurosci. 22, 2 (2002)Google Scholar
  31. A. P. Wickens, Respir. Physiol. 128 (2001)Google Scholar
  32. H. Ye, B. Ye, D. Wang, Neurobiol. Learn. Mem. 90, 1 (2008)CrossRefGoogle Scholar
  33. F. Zeng, C.B. Rohde, M.F. Yanik, Lab Chip 8, 5 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations