Biomedical Microdevices

, Volume 14, Issue 4, pp 699–708 | Cite as

Integrated high pressure microhydraulic actuation and control for surgical instruments

  • A. J. M. Moers
  • M. F. L. De VolderEmail author
  • D. Reynaerts


To reduce the surgical trauma to the patient, minimally invasive surgery is gaining considerable importance since the eighties. More recently, robot assisted minimally invasive surgery was introduced to enhance the surgeon’s performance in these procedures. This resulted in an intensive research on the design, fabrication and control of surgical robots over the last decades. A new development in the field of surgical tool manipulators is presented in this article: a flexible manipulator with distributed degrees of freedom powered by microhydraulic actuators. The tool consists of successive flexible segments, each with two bending degrees of freedom. To actuate these compliant segments, dedicated fluidic actuators are incorporated, together with compact hydraulic valves which control the actuator motion. Especially the development of microvalves for this application was challenging, and are the main focus of this paper. The valves distribute the hydraulic power from one common high pressure supply to a series of artificial muscle actuators. Tests show that the angular stroke of the each segment of this medical instrument is 90°.


Surgical manipulator Minimally invasive surgery High pressure microvalves Hydraulic microactuator 



This research was supported by the Fund for Scientific Research (FWO), and the Agency for Innovation by Science and Technology (IWT), Flanders, Belgium.


  1. G.H. Ballantyne, Robotic surgery, telerobotic surgery, telepresence, and telementoring - Review of early clinical results. Surg. Endoscop. Interv. Techniques 16(10), 1389–402 (2002)CrossRefGoogle Scholar
  2. D.G. Caldwell, G.A. Medranocerda, M.J. Goodwin, Braided pneumatic actuator control of a multi-jointed manipulator, 1993 IEEE International Conference on Systems, Man and Cybernetics, pp. 423–428Google Scholar
  3. A. De Greef, P. Lambert, A. Delchambre, Prec. Engineer. J. Int. Soci. Prec. Engineer. Nanotech 33, 311 (2009)Google Scholar
  4. M. De Volder, D. Reynaerts, Development of a hybrid ferrofluid seal technology for miniature pneumatic and hydraulic actuators. Sens. Actuat. A. Phys. 152, 234–40 (2009)CrossRefGoogle Scholar
  5. M. De Volder, D. Reynaerts, Pneumatic and hydraulic actuators: a review. J. Micromech. Microeng. 20(4), 043001 (2010)CrossRefGoogle Scholar
  6. M. De Volder, J. Coosemans, R. Puers, D. Reynaerts, Characterisation and control of a pneumatic microactuator with an integrated inductive position sensor. Sens. Actuat. A. Phys. 141, 192–200 (2008)CrossRefGoogle Scholar
  7. M. De Volder, F. Ceyssens, D. Reynaerts, R. Puers, J. Microelectro. Syst. 18, 1100 (2009)CrossRefGoogle Scholar
  8. M. De Volder, A. Moers, D. Reynaerts, Fabrication and control of miniature McKibben actuators. Sens. Actuat. A. Phys. 166(1), 111–6 (2011)CrossRefGoogle Scholar
  9. M. Doumit, A. Fahim, M. Munro, Analytical modeling and experimental validation of the braided pneumatic muscle. IEEE Trans. Robot. 25, 1282–91 (2009)CrossRefGoogle Scholar
  10. R. Gaylord, Fluid actuated motor system and stroking device. U. S. Patent 2, 844–126 (1958)Google Scholar
  11. B. Gorissen, M. De Volder, A. De Greef, D. Reynaerts, Theoretical and experimental analysis of pneumatic balloon microactuators. Sens. Actuat. A. Phys. 168(1), 58–65 (2011)CrossRefGoogle Scholar
  12. K. Harada, D. Oetomo, E. Susilo, A. Menciassi, D. Daney, J.P. Merlet, P. Dario, A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results. Robotica 28(SI), 171–83 (2010)CrossRefGoogle Scholar
  13. S. Hirose, A. Morishima, S. Tukagosi et al. Design of practical snake vehicle: articulated body mobile robot KR-II, 91 ICAR. Fifth International Conference on Advanced Robotics. Robots in Unstructured Environments, Pisa, Italy Date: 19–22 June 1991, vol. 1, pp. 833–838.Google Scholar
  14. O.C. Jeong, S. Konishi, J. Microelectro. Syst. 15, 896 (2006)CrossRefGoogle Scholar
  15. V. Karimyan, M. Sodergren, J. Clark, G.-Z. Yang, A. Darzi, Navigation systems and platforms in natural orifice translumenal endoscopic surgery (notes). Int. J. Surg. 7, 297304 (2009)CrossRefGoogle Scholar
  16. J.-W. Kim, K. Yoshida, K. Kouda, S. Yokota, Sens. Actuat. A. Phys. 156, 366 (2009)CrossRefGoogle Scholar
  17. G. Klute, B. Hannaford, Accounting for elastic energy storage in mckibben articial muscle actuators. Trans. ASME. 122, 386–8 (2000)Google Scholar
  18. S. Konishi, 2011 International Meeting for Future of Electron Devices (IMFEDK) 2011.Google Scholar
  19. S. Konishi, F. Kawai, P. Cusin, Sens. Actuat. A. Phys. 89, 28 (2001)CrossRefGoogle Scholar
  20. Y.-W. Lu, C.-J. Kim, App. Phys. Let. 89, (2006)Google Scholar
  21. R. Nayyar, N.P. Gupta, Critical appraisal of technical problems with robotic urological surgery. BJU Int. 105(12), 1710–3 (2010)CrossRefGoogle Scholar
  22. K.W. Oh, C.H. Ahn, A review of microvalves. J. Micromech. Microeng. 16, R13–39 (2006)CrossRefGoogle Scholar
  23. J. Peirs, J. Clijnen, D. Reynaerts, H. Van Brussel, P. Herijgers, B. Corteville, S. Boone, A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens. Actuat. A. Phys. 115, 447–55 (2004)CrossRefGoogle Scholar
  24. C. Raoufi, A. A. Goldenberg, W. Kucharczyk, J. Biomed. Scie. Engineer. 1, (2008)Google Scholar
  25. D. Reynaerts, J. Peirs, H. Van Brussel, A mechatronic approach to microsystem design. IEEE-ASME Trans. Mech. 3(1), 24–33 (1998)CrossRefGoogle Scholar
  26. A. Ruzzu, K. Bade, J. Fahrenberg, D. Maas, J. Micromech. Microeng. 8, 161 (1998)CrossRefGoogle Scholar
  27. D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, L. Kavoussi, IEEE ASME Trans. Mechatron. 12, 98 (2007)CrossRefGoogle Scholar
  28. K. Suzumori, A. Koga, F. Kondo, R. Haneda, Robotica 14, 493 (1996)CrossRefGoogle Scholar
  29. K. Tadano, K. Kawashima, Adv. Robot. 24, 1763 (2010)CrossRefGoogle Scholar
  30. K. Takemura, S. Park, T. Maeno, J. Sound Vib. 311, 652 (2008)CrossRefGoogle Scholar
  31. E. Urata, S. Miyakawa, C. Yamashina, Y. Nakao, Y. Usami, M. Shinoda, JSME Int. J. Series B. Fluids Therm. Engineer. 41, 286 (1998)CrossRefGoogle Scholar
  32. S. Wakimoto, K. Suzumori, K. Ogura, Adv. Robot. 25, 1311 (2011)CrossRefGoogle Scholar
  33. Y. Watanabe, M. Maeda, N. Yajim, R. Nakamura, H. Iseki, M. Yamato, T. Okano, S. Hori, S. Konishi, Small, soft, and safe microactuator for retinal pigment epithelium transplantation. IEEE MEMS Conf. (2007) pp. 659–62Google Scholar
  34. Y. Watanabe, M. Maeda, N. Yaji, R. Nakamura, H. Iseki, M. Yamato, T. Okano, S. Hori, S. Konishi, 2007 20th IEEE International Conference on Micro Electro Mechanical Systems - MEMS ‘07 2007.Google Scholar
  35. J.D. Waye, D.K. Rex, C.B. Williams, Colonoscopy: Principles and Practice, 2nd edn (Blackwell Publishing Ltd, 2009)Google Scholar
  36. R.J. Webster, A.M. Okamura, N.J. Cowan, Toward active cannulas: miniature snake-like surgical robots, IEEE/RSJ Int. Conf. Intell. Robot. Syst. 1–12, 2857–63 (2006)CrossRefGoogle Scholar
  37. A. Yamaguchi, K. Takemura, S. Yokota, K. Edamura, A robot hand using electro-conjugate fluid. Sens. Actuat. A. Phys. 170(1–2), 139–46 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. J. M. Moers
    • 1
  • M. F. L. De Volder
    • 1
    Email author
  • D. Reynaerts
    • 1
  1. 1.Department of Mechanical Engineering, KULeuvenLeuvenBelgium

Personalised recommendations