Biomedical Microdevices

, Volume 14, Issue 4, pp 679–687 | Cite as

Conformational studies of common protein templates in macromolecularly imprinted polymers

  • David R. Kryscio
  • Michael Q. Fleming
  • Nicholas A. Peppas
Article

Abstract

Unlike the molecular imprinting of small molecule templates, molecularly imprinted polymers specific to large templates (>1,500 Da), have achieved limited success to date. Conformational stability of these labile macromolecules is one of the main factors that prevent the direct extension of successful procedures from the small molecule regime. We continue our systematic investigation of the effect of common components in macromolecular MIPs on the conformation of protein templates. Circular dichroism was used to show that frequently employed monomers and crosslinkers induce significant changes in the secondary structures of lysozyme and bovine hemoglobin. The extent to which this change occurs, at ligand concentrations far below what are typically used reported work, is cause for concern and provides as rational explanation for the lack of success in this arena. This is because a change in the template structure prior to polymerization would lead to the binding sites formed during polymerization to be specific to this alternate conformation. Subsequent studies with the macromolecule in its native state and the crosslinked network would not be successful. Using this information as a guide, we offer suggestions as to where work in macromolecular imprinted polymers should focus going forward in order for these antibody mimics to reach their vast potential as a new class of biomedical diagnostic devices.

Keywords

Molecular imprinting Protein imprinting Macromolecular conformation Circular dichroism Lysozyme Bovine hemoglobin 

References

  1. C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. O’Mahony, M.J. Whitcombe, J. Mol, Recognit. 19, 106–180 (2006)CrossRefGoogle Scholar
  2. N. Bergmann, N.A. Peppas, Prog. Polym. Sci. 33, 271–288 (2008)CrossRefGoogle Scholar
  3. I. Chianella, M. Lotierzo, S.A. Piletsky, I.E. Tothill, B.N. Chen, K. Karim, A.P.F. Turner, Anal. Chem. 74, 1288–1293 (2002)CrossRefGoogle Scholar
  4. T.F.F. Chow, Y.M. Youssef, E. Lianidou, A.D. Romaschin, R.J. Honey, R. Stewart, K.T. Pace, G.M. Yousef, Clin. Biochem. 43, 150–158 (2010)CrossRefGoogle Scholar
  5. S.M. Dong, Y.H. Cheng, J. Yang, J.Y. Li, X.J. Liu, X.B. Wang, D. Wang, T.J. Krall, E.S. Delphin, C.X. Zhang, J. Biol, Chem. 284, 29514–29525 (2009)Google Scholar
  6. V.M. Fowler, N.J. Greenfield, J. Moyer, J. Biol, Chem. 278, 40000–40009 (2003)Google Scholar
  7. Y. Ge, A.F. Turner, Trends Biotechnol. 26, 218–224 (2008)CrossRefGoogle Scholar
  8. N.J. Greenfield, Anal. Biochem. 235, 1–10 (1996)CrossRefGoogle Scholar
  9. N.J. Greenfield, Nat. Protoc. 1, 2733–2741 (2006)CrossRefGoogle Scholar
  10. D.B. Henthorn, N.A. Peppas, Ind. Eng. Chem. Res. 46, 6084–6091 (2007)CrossRefGoogle Scholar
  11. Y. Hoshino, T. Kodama, Y. Okahata, K.J. Shea, J. Am. Chem. Soc. 130, 15242–15423 (2008)CrossRefGoogle Scholar
  12. Y. Hoshino, T. Urakami, T. Kodama, H. Koide, N. Oku, Y. Okahata, K.J. Shea, Small 5, 1562–1568 (2009)CrossRefGoogle Scholar
  13. Y. Hoshino, H. Koide, T. Urakami, H. Kanazawa, T. Kodama, N. Oku, K.J. Shea, J. Am, Chem. Soc. 132, 6644–6645 (2010)CrossRefGoogle Scholar
  14. X.B. Hu, G.T. Li, J. Huang, D. Zhang, Y. Qiu, Adv. Mater. 19, 4327–4332 (2007)CrossRefGoogle Scholar
  15. Z.D. Hua, S. Zhou, M.P. Zhao, Biosens. Bioelectron. 25, 615–622 (2009)CrossRefGoogle Scholar
  16. B.C.G. Karlsson, J. O’Mahony, J.G. Karlsson, H. Bengtsson, L.A. Eriksso, I.A. Nicholls, J. Am, Chem. Soc. 131, 13297–13304 (2009)CrossRefGoogle Scholar
  17. S.M. Kelly, T.J. Jess, N.C. Price, Biochim. Biophys. Acta Protein Proteonomics 1751, 119–139 (2005)CrossRefGoogle Scholar
  18. T. Knubovets, J.J. Osterhout, P.J. Connolly, A.M. Klibanov, Proc. Natl. Acad. Sci. U. S. A. 96, 1262–1267 (1999)CrossRefGoogle Scholar
  19. D.R. Kryscio, M.Q. Fleming, N.A. Peppas, Macromolec. Biosciences, submittedGoogle Scholar
  20. D.R. Kryscio, N.A. Peppas, AICHE J. 55, 1311–1324 (2009)CrossRefGoogle Scholar
  21. H.Y. Lin, C.Y. Hsu, J.L. Thomas, S.E. Wang, H.C. Chen, T.C. Chou, Biosens. Bioelectron. 22, 534–543 (2006)CrossRefGoogle Scholar
  22. D. Malamud, J.W. Drysdale, Anal. Biochem. 86, 620–647 (1978)CrossRefGoogle Scholar
  23. P. Manavalan, W.C. Johnson, Anal. Biochem. 167, 76–85 (1987)CrossRefGoogle Scholar
  24. K. Matsuo, R. Yonehara, K. Gekko, J. Biochem. (Tokyo) 135, 405–411 (2004)CrossRefGoogle Scholar
  25. A. Menaker, V. Syritski, J. Reut, A. Opik, V. Horvath, R.E. Gyurcsanyi, Adv. Mater. 21, 2271–2275 (2009)CrossRefGoogle Scholar
  26. I.A. Nicholls, H.S. Andersson, C. Charlton, H. Henschel, B.C.G. Karlsson, J.G. Karlsson, J. O’Mahony, A.M. Rosengren, K.J. Rosengren, S. Wikman, Biosens. Bioelectron. 25, 543–552 (2009)CrossRefGoogle Scholar
  27. H. Nishino, Angew. Chem. Int. Ed. 45, 2392–2396 (2006)CrossRefGoogle Scholar
  28. A.A. Ozcan, R. Say, A. Denizli, A. Ersoz, Anal. Chem. 78, 7253–7258 (2006)CrossRefGoogle Scholar
  29. D. Pavel, J. Lagowski, Polymer 46, 7528–7542 (2005)CrossRefGoogle Scholar
  30. S.A. Piletsky, K. Karim, E.V. Piletska, C.J. Day, K.W. Freebairn, C. Legge, A.P.F. Turner, Analyst 126, 1826–1830 (2001)CrossRefGoogle Scholar
  31. A. Rachkov, Anal. Chim. Acta 504, 191–197 (2004)CrossRefGoogle Scholar
  32. A. Rachkov, N. Minoura, Chromatography A 889, 111–118 (2000)CrossRefGoogle Scholar
  33. A. Rachkov, N. Minoura, Biochim. Biophys. Acta 1544, 255–266 (2001)CrossRefGoogle Scholar
  34. H.Q. Shi, W.B. Tsai, M.D. Garrison, S. Ferrari, B.D. Ratner, Nature 398, 593–597 (1999)CrossRefGoogle Scholar
  35. R.X. Su, W. Qi, Z.M. He, Eur. Food Res. Technol. 225, 637–647 (2007)CrossRefGoogle Scholar
  36. W.X. Su, J. Rick, T.C. Chou, Microchem. J. 92, 123–128 (2009)CrossRefGoogle Scholar
  37. D.F. Tai, C.Y. Lin, T.Z. Wu, L.K. Chen, Anal. Chem. 77, 5140–5143 (2005)CrossRefGoogle Scholar
  38. D.F. Tai, C.Y. Lin, T.Z. Wu, J.H. Huang, P.Y. Shu, Clin. Chem. 52, 1486–1491 (2006)CrossRefGoogle Scholar
  39. D.F. Tai, M.H. Jhang, G.Y. Chen, S.C. Wang, K.H. Lu, Y.D. Lee, H.T. Liu, Anal. Chem. 82, 2290–2293 (2010)CrossRefGoogle Scholar
  40. C.J. Tan, Y.W. Tong, Langmuir 23, 2722–2730 (2007)CrossRefGoogle Scholar
  41. C.J. Tan, M.G. Chua, K.H. Ker, Y.W. Tong, Anal. Chem. 80, 683–692 (2008a)CrossRefGoogle Scholar
  42. C.J. Tan, S. Wangrangsimakul, R. Bai, Y.W. Tong, Chem. Mater. 20, 118–127 (2008b)CrossRefGoogle Scholar
  43. N.W. Turner, C.W. Jeans, K.R. Brain, C.J. Allender, V. Hlady, D.W. Britt, Biotechnol. Prog. 22, 1474–1489 (2006)Google Scholar
  44. R.W. Woody, Circular Dichroism, 2nd edn. (Academic Press Inc., San Diego, 1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David R. Kryscio
    • 1
  • Michael Q. Fleming
    • 2
  • Nicholas A. Peppas
    • 1
    • 2
  1. 1.Cockrell School of Engineering, Department of Chemical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Cockrell School of Engineering, Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations