Biomedical Microdevices

, Volume 14, Issue 4, pp 625–629 | Cite as

Improvement in cell capture throughput using parallel bioactivated microfluidic channels

  • Mehdi Javanmard
  • Farbod Babrzadeh
  • Pål Nyrén
  • Ronald W. Davis


Optimization of targeted cell capture with microfluidic devices continues to be a challenge. On the one hand, microfluidics allow working with microliter volumes of liquids, whereas various applications in the real world require detection of target analyte in large volumes, such as capture of rare cell types in several ml of blood. This contrast of volumes (microliter vs. ml) has prevented the emergence of microfluidic cell capture sensors in the clinical setting. Here, we study the improvement in cell capture and throughput achieved using parallel bioactivated microfluidic channels. The device consists of channels in parallel with each other tied to a single channel. We discuss fabrication and testing of our devices, and show the ability for an improvement in throughput detection of target cells.


Microfluidics Cell capture Pathogen detection 



This research was supported by National Institutes of Health Grant P01 HG000205.


  1. X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, M. Toner, Lab Chip 7, 170–178 (2007)CrossRefGoogle Scholar
  2. A.H. Talasaz, A.A. Powell, D.E. Huber, J.G. Berbee, K.-H. Roh, W. Yu, W. Xiao, M.M. Davis, R.F. Pease, M.N. Mindrinos, S.S. Jeffrey, R.W. Davis, Proc Natl Acad Sci 106, 3970–3975 (2009)CrossRefGoogle Scholar
  3. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235–1239 (2007)CrossRefGoogle Scholar
  4. Z. Du, K. Cheng, M. Vaughn, N. Collie, L. Gollahon, Biomedical Microdevices 9, 35–42 (2007)CrossRefGoogle Scholar
  5. M. Javanmard, A.H. Talasaz, M. Nemat-Gorgani, F. Pease, M. Ronaghi, R.W. Davis, Biomicrofluidics 1, 044103–044110 (2007)CrossRefGoogle Scholar
  6. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  7. S.M. Radke, E.C. Alocilja, Biosens Bioelectron 20, 1662–1667 (2005)CrossRefGoogle Scholar
  8. D. Irmia, M. Toner, Annu. Rev. Biomed. Eng. 7 (2005)Google Scholar
  9. I. Nicoletti, G. Migliorati, M.C. Pagliacci, F. Grignani, C. Riccardi, J Immunol Methods 139, 271–279 (1991)CrossRefGoogle Scholar
  10. D. McClain, W. Lee, (Beltsville, Maryland, 1989)Google Scholar
  11. J. B. Kaper and A. D. O’Brien, Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. (ASM Press, Washington, D.C, 1998)Google Scholar
  12. P. Mead, L. Slutsker, V. Dietz, L. McCaig, J. Bresee, S. Shapiro, P. Griffin, R. Tauxe, Emerg Infect Dis 5, 607 (1999)CrossRefGoogle Scholar
  13. S. B. March and S. Ratnam. J Clinical Microbiol 869 (1983)Google Scholar
  14. M.A. Pfaller, R.N. Jones, S.A. Messer, M.B. Edmond, R.P. Wenzel, Diagn Microbiol Infect Dis 31, 327–332 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mehdi Javanmard
    • 1
  • Farbod Babrzadeh
    • 1
    • 2
  • Pål Nyrén
    • 2
  • Ronald W. Davis
    • 1
  1. 1.Stanford Genome Technology CenterStanford University StanfordStanfordUSA
  2. 2.Department of BiotechnologyAlbaNova UniversityCenter, KTHStockholmSweden

Personalised recommendations