Biomedical Microdevices

, Volume 14, Issue 3, pp 573–581 | Cite as

Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring

  • P. BinggerEmail author
  • M. Zens
  • P. Woias


An innovative procedure for measuring blood pressure, with none of the disadvantages of current procedures, is proposed. A highly-flexible capacitive strain gauge has been designed to measure changes in the diameter of a blood vessel; such changes are indicative of blood pressure. The sensor is implanted and wrapped around an arterial blood vessel during the normal course of a surgical procedure. In vivo tests, demonstrating the feasibility of this concept, are reported, along with in vitro tests and notes on sensor design and fabrication. These continuous blood pressure monitoring sensors may be used for a continuous long-term monitoring of blood pressure and pulse. They may also be combined with a real-time nerve stimulation technique or a course of medication to create a closed-loop system for blood-pressure control.


Blood pressure monitoring Capacitive highly-flexible strain gauge Long-term Implantable Sensor strip PEDOT:PSS 



This work was supported by grants of Deutsche Forschungsgemeinschaft/German Research Council (Project: Implantierbares Sensorsystem zum Dauermonitoring kardiovaskulärer Vitalparameter (VITAMON)).


  1. J. Bisognano, J. Sloand, V. Papademetriou, M. Rothstein, D. Sica, J. Flack, T.L. Pertile, R.J. Cody, An implantable carotid sinus baroreflex activating system for drug-resistant hypertension: Surgical technique and short-term outcome from the multi-center, Rheos Feasibility Trial. J Vasc Surg 44, 1213–1218 (2006)CrossRefGoogle Scholar
  2. J. Black, G.W. Hastings, Handbook of biomaterial properties. (Springer, 1998). ISBN:9780412603303. (2008)
  3. R. Busse et al., The mechanical properties of exposed human common carotid arteries in vivo. Basic Res Cardiol 74(5), 545–554 (1979). doi: 10.1007/BF01907647(1979 CrossRefGoogle Scholar
  4. P. Elter, Methoden und Systeme zur nichtinvasiven, kontinuierlichen und belastungsfreien Blutdruckmessung. PhD thesis. (2001)Google Scholar
  5. A. Geipler, Novel two-stage peristaltic micropump optimized for automated drug delivery and integration into polymer microfluidic systems. PhD thesis. (2008)Google Scholar
  6. F. Hansen et al., Diameter and compliance in the human common carotid artery—variations with age and sex. In: Ultrasound Med Biol 21.1 (1995), pp. 1–9. issn: 0301-5629. doi: 10.1016/0301-5629(94) 00090-5. (1995)
  7. U. Lang, N. Naujoks, J. Dual, Mechanical characterization of PEDOT:PSS thin films. In: Synthetic Met 159.5-6 (2009), pp. 473–479. ISSN: 0379-6779. doi:16/j.synthmet.2008.11.005. (2009)
  8. F. Michard, Changes in arterial pressure during mechanical, ventilation, anesthesiology. 103, 419–28 (2005)Google Scholar
  9. M.E. Safar et al., Stiffness of carotid artery wall material and blood pressure in humans: application to antihypertensive therapy and stroke prevention. In: Stroke 31.3 (2000), pp. 782–790. (2000)Google Scholar
  10. R.F. Schmidt, G. Thews, F. Lang, Physiologie des Menschen. 28., korr. u. aktualis. Aufl. (Springer, Berlin, Feb. 2000). ISBN:3540667334. (2000)
  11. M. Schuettler, D. Pfau, J.S. Ordonez, C. Henle, P. Woias, T. Stieglitz, Stretchable tracks for laser-machined neural electrode arrays. EMBC (2009)Google Scholar
  12. Statistisches Bundesamt Deutschland. Pressemitteilung Nr.344: Herz-/Kreislauf-Erkrankungen sind die häufigste Todesursache. 232_Todesursachen, May 2009.,templateId=renderPrint.psml. Accessed 13 January 2012. (2009)
  13. C.J. van Andel, P.V. Pistecky, C. Borst, Mechanical properties of coronary arteries and internal mammary arteries beyond physiological deformations. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE. Vol. 1. 2001, 113–115 vol.1. ISBN: 1094-687X. doi: 10.1109/IEMBS.2001.1018861. (2001)
  14. K. Wolf-Maier et al., Hypertension prevalence and blood pressure levels in 6 European countries, Canada, and the United States. In: JAMA: J Am Med Assoc 289.18 (May 2003). PMID: 12746359, pp. 2363–2369. issn: 0098-7484. doi: 10.1001/jama.289.18.2363. (2009)
  15. M. Zile et al., Application of implantable hemodynamic monitoring in the management of patients with diastolic heart failure: a subgroup analysis of the COMPASS-HF trial. In: J Card Fail 14.10 (2008), pp. 816–823. ISSN: 10719164. doi: 10.1016/j.cardfail.2008.07.235. (2008)

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Microsystems Engineering—IMTEKUniversity of FreiburgFreiburgGermany

Personalised recommendations