Biomedical Microdevices

, Volume 14, Issue 3, pp 549–558 | Cite as

Biomimetic hydrogels gate transport of calcium ions across cell culture inserts

  • Christian N. Kotanen
  • A. Nolan Wilson
  • Ann M. Wilson
  • Kazuhiko Ishihara
  • Anthony Guiseppi-Elie


Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T = 10 μm, φ = 0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6 ± 1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0–2.5 × 10−6 cm2/s), diffusion coefficients ranged from 1.40 × 10−6 cm2/s to 1.80 × 10−7 cm2/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.


Poly(HEMA) Biomimetic Hydrogels Co-networks Modulus Cross-linking density 



The authors acknowledge support from the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B). A.M. Wilson acknowledges support from the Department of Chemistry, University of the West Indies, St. Augustine and ABTECH Scientific, Inc.


  1. S. Abraham, S. Brahim, K. Ishihara, A. Guiseppi-Elie, Molecularly engineered p (HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26(23), 4767–4778 (2005)CrossRefGoogle Scholar
  2. T. Alfrey Jr., E.F. Gurnee, W.G. Lloyd, J. Polym. Sci. Part C 12, 249 (1966)Google Scholar
  3. M.T. am Ende, D. Hariharan, N.A. Peppas, Factors influencing drug and protein transport and release from ionic hydrogels. React. Polym. 25(2–3), 127–137 (1995)CrossRefGoogle Scholar
  4. T. Anada, T. Kumagai, Y. Honda, T. Masuda, R. Kamijo, S. Kamakura, N. Yoshihara, Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells. Tissue Eng Part A 14, 965 (2008)CrossRefGoogle Scholar
  5. F. Arai, A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G.Y. Koh, T. Suda, Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2), 149–161 (2004)CrossRefGoogle Scholar
  6. Y.H. Bae, T. Okano, S.W. Kim, Insulin permeation through thermo-sensitive hydrogels. Journal of Controlled Release 9(3), 271–279 (1989)CrossRefGoogle Scholar
  7. M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews 4, 517–529 (2003)Google Scholar
  8. A.O. Boztas, A. Guiseppi-Elie, Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Biomacromolecules 10(8), 2135–2143 (2009)CrossRefGoogle Scholar
  9. S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Synthesis and hydration properties of pH-sensitive, p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules 4(3), 497–503 (2003)CrossRefGoogle Scholar
  10. C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu, A. Bigi, Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater 4, 1885 (2008)CrossRefGoogle Scholar
  11. V. Compañ, J.S. Román, E. Riande, T.S. Sørensen, B. Levenfeld, A. Andrio, Oxygen transport through methacrylate-based hydrogels with potential biological capability. Biomaterials 17(12), 1243–1249 (1996)CrossRefGoogle Scholar
  12. J. Crank, The Mathematics of Diffusion, 2nd edn. (Clarendon, Oxford, Eng, 1975)Google Scholar
  13. N.I. El-Awady, Dialysis membranes from polyethylene films grafted with acrylic acid. J. Appl. Polym. Sci. 91(1), 10–14 (2004)CrossRefGoogle Scholar
  14. N. Fatin-Rouge, A. Milon, J. Buffle, R.R. Goulet, A. Tessier, Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J. Phys. Chem. B 107(44), 12126–12137 (2003)CrossRefGoogle Scholar
  15. D. Fournier, R. Hoogenboom, H.M. Thijs, R.M. Paulus, U.S. Schubert, Tunable pH- and temperature-sensitive copolymer libraries by reversible addition-fragmentation chain transfer. Macromolecules 40, 915–920 (2007)CrossRefGoogle Scholar
  16. K. Gawel, D. Barriet, M. Sletmoen, B.T. Stokke, Responsive hydrogels for label-free signal transduction within biosensors. Sensors 10(5), 4381–4409 (2010)CrossRefGoogle Scholar
  17. A. Guiseppi-Elie, Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31(10), 2701–2716 (2010)CrossRefGoogle Scholar
  18. A. Guiseppi-Elie, S. Brahim, D. Narinesingh, A chemically synthesized artificial pancreas: release of insulin from glucose–responsive hydrogels. Adv. Mater. 14(10), 743–746 (2002)CrossRefGoogle Scholar
  19. C.J. Hamilton, S.M. Murphy, N.D. Atherton, B.J. Tighe, Synthetic hydrogels: 4. The permeability of poly(2-hydroxyethyl methacrylate) to cations–an overview of solute–water interactions and transport processes. Polymer 29(10), 1879–1886 (1988)CrossRefGoogle Scholar
  20. L.Y. Heng, E.A.H. Hall, Producing “self-plasticizing” ion-selective membranes. Anal. Chem. 72(1), 42–51 (1999)CrossRefGoogle Scholar
  21. A.S. Hoffman, Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 54(1), 3–12 (2002)CrossRefGoogle Scholar
  22. K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polymers and their properties as hydrogel membrane. Polym. J. 23, 355–360 (1990)CrossRefGoogle Scholar
  23. E. Ito, M. Higuchi, K. Yamamoto, K. Nagata, T. Kinoshita, Ionic salt permeability through phase-separated membranes composed of amphoteric polymers. J. Appl. Polym. Sci. 120(1), 79–85 (2011)CrossRefGoogle Scholar
  24. R. Jeyanthi, K. Panduranga Rao, In vivo biocompatibility of collagenpoly(hydroxyethyl methacrylate) hydrogels. Biomaterials 11(4), 238–243 (1990)CrossRefGoogle Scholar
  25. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27), 5474–5491 (2005)CrossRefGoogle Scholar
  26. K. Kato, E. Uchida, E.-T. Kang, Y. Uyama, Y. Ikada, Polymer surface with graft chains. Prog. Polym. Sci. 28(2), 209–259 (2003)CrossRefGoogle Scholar
  27. M.A. Khan, M. Masudul Hassan, L.T. Drzal, Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite. Composites Part A: Applied Science and Manufacturing 36(1), 71–81 (2005)Google Scholar
  28. J. Kopeček, Biomaterials and drug delivery - past, present, and future. Mol. Pharm. 7(4), 922–925 (2010)CrossRefGoogle Scholar
  29. H. Li, D.Q. Wang, B.L. Liu, L.Z. Gao, Synthesis of a novel gelatin–carbon nanotubes hybrid hydrogel. Colloids and Surfaces B: Biointerfaces 33(2), 85–88 (2004)CrossRefGoogle Scholar
  30. C.C. Lin, A.T. Metters, Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced Drug Delivery Reviews 58(12–13), 1379–1408 (2006)CrossRefGoogle Scholar
  31. E. Mack, T. Okano, S. Kim, N. Peppas, Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, 1988). Polymers Vol IIGoogle Scholar
  32. T. Matsumoto, M. Okazaki, A. Nakahira, J. Sasaki, H. Egusa, T. Sohmura, Modification of apatite materials for bone tissue engineering and drug delivery system. Curr. Med. Chem. 14, 2726 (2007)CrossRefGoogle Scholar
  33. A.T. Metters, K.S. Anseth, C.N. Bowman, Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41(11), 3993–4004 (2000)CrossRefGoogle Scholar
  34. J.P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethyl methacrylate (Hema) - chemical-properties and applications in biomedical fields. J Macromol Sci R M C C32(1), 1–34 (1992)CrossRefGoogle Scholar
  35. S.M. Murphy, C.J. Hamilton, B.J. Tighe, Synthetic hydrogels: 5. Transport processes in 2-hydroxyethyl methacrylate copolymers. Polymer 29(10), 1887–1893 (1988)CrossRefGoogle Scholar
  36. S. Nakamura, T. Matsumoto, J.-I. Sasaki, H. Egusa, K.Y. Lee, T. Nakano, T. Sohmura, A. Nakahira, Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Engineering Part A 16(8), 2467–2473 (2010)CrossRefGoogle Scholar
  37. M. Naraghi, E. Neher, Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17(18), 6961–6973 (1997)Google Scholar
  38. R.M. Ottenbrite, K. Park, T. Okano (eds.), Biomedical Applications of Hydrogels Handbook, 1st edn. (Springer, New York, 2010)Google Scholar
  39. K.G. Papadokostaki, M.E. Herouvim, Kinetics of release of particulate solutes incorporated in cellulosic polymer matrices as a function of solute solubility and polymer swellability. III. Moderately soluble solute. Journal of Applied Polymer Science 84(11), 2028–2039 (2002)CrossRefGoogle Scholar
  40. G.G. Pitt, Y. Cha, S.S. Shah, K.J. Zhu, Blends of PVA and PGLA: control of the permeability and degradability of hydrogels by blending. Journal of Controlled Release 19(1–3), 189–199 (1992)CrossRefGoogle Scholar
  41. A. Rivaton, D. Sallet, J. Lemaire, The photochemistry of bisphenol-A polycarbonate reconsidered. Polym. Photochem. 3(6), 463–481 (1983)CrossRefGoogle Scholar
  42. P.A. Russo, C.S. Bouchard, J.M. Galasso, Extended-wear silicone hydrogel soft contact lenses in the management of moderate to severe dry eye signs and symptoms secondary to graft-versus-host disease. Eye Contact Lens 33(3), 144–147 (2007)CrossRefGoogle Scholar
  43. S.W. Rutherford, D.D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes. Adsorption 3(4), 283–312 (1997)CrossRefGoogle Scholar
  44. A.N. Shipway, I. Willner, Electronically transduced molecular mechanical and information functions on surfaces. Accounts of Chemical Research 34(6), 421–432 (2001)CrossRefGoogle Scholar
  45. B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Hydrogels in regenerative medicine. Adv. Mater. 21(1), 3307–3329 (2009)CrossRefGoogle Scholar
  46. G.D. Smith, L. Dai, R.M. Miura, A. Sherman, Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J. Appl. Math. 61(5), 1816–1838 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  47. R. Trigo, M. Blanco, P. Huerta, R. Olmo, J. Teijon, L-Ascorbic acid release from poly(2-hydroxyethyl methacrylate) hydrogels. Polym. Bull. 31, 577–584 (1993)CrossRefGoogle Scholar
  48. J. Varshosaz, M. Falamarzian, Drug diffusion mechanism through pH-sensitive hydrophobic/polyelectrolyte hydrogel membranes. Eur. J. Pharm. Biopharm. 51(3), 235–240 (2001)CrossRefGoogle Scholar
  49. Y. Wang, G. Tan, S. Zhang, Y. Guang, Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact lens materials. Applied Surface Science 255(2), 604–606 (2008)CrossRefGoogle Scholar
  50. A.M. Wilson, G. Justin, A. Guiseppi-Elie, Electroconductive Hydrogels, in Biomedical Applications of Hydrogels Handbook, ed. by R.M. Ottenbrite, K. Park, T. Okano, 1st edn. (Springer, New York, 2010), pp. 319–337CrossRefGoogle Scholar
  51. B. Yu, C. Wang, Y.M. Ju, L. West, J. Harmon, Y. Moussy, F. Moussy, Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosens. Bioelectron. 23(8), 1278–1284 (2008)CrossRefGoogle Scholar
  52. J. Zhang, C. Niu, L. Ye, H. Huang, X. He, W.-G. Tong, J. Ross, J. Haug, T. Johnson, J.Q. Feng, S. Harris, L.M. Wiedemann, Y. Mishina, L. Li, Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960), 836–841 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christian N. Kotanen
    • 1
    • 2
  • A. Nolan Wilson
    • 1
    • 3
  • Ann M. Wilson
    • 4
  • Kazuhiko Ishihara
    • 5
  • Anthony Guiseppi-Elie
    • 1
    • 2
    • 3
    • 6
  1. 1.Center for Bioelectronics, Biosensors and Biochips (C3B)Clemson UniversityAndersonUSA
  2. 2.BioengineeringClemson UniversityClemsonUSA
  3. 3.Chemical and Biomolecular EngineeringClemson UniversityClemsonUSA
  4. 4.Department of ChemistryUniversity of the West IndiesSt. AugustineRepublic of Trinidad and Tobago
  5. 5.Departments of Materials Engineering and Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
  6. 6.Electrical and Computer EngineeringClemson UniversityClemsonUSA

Personalised recommendations