Biomedical Microdevices

, Volume 14, Issue 2, pp 401–407 | Cite as

Immunocapture of prostate cancer cells by use of anti-PSMA antibodies in microdevices

  • Steven M. Santana
  • He Liu
  • Neil H. Bander
  • Jason P. Gleghorn
  • Brian J. Kirby


Patients suffering from cancer can shed tumor cells into the bloodstream, leading to one of the most important mechanisms of metastasis. As such, the capture of these cells is of great interest. Circulating tumor cells are typically extracted from circulation through positive selection with the epithelial cell-adhesion molecule (EpCAM), leading to currently unknown biases when cells are undergoing epithelial-to-mesenchymal transition. For prostate cancer, prostate-specific membrane antigen (PSMA) presents a compelling target for immunocapture, as PSMA levels increase in higher-grade cancers and metastatic disease and are specific to the prostate epithelium. This study uses monoclonal antibodies J591 and J415—antibodies that are highly specific for intact extracellular domains of PSMA on live cells—in microfluidic devices for the capture of LNCaPs, a PSMA-expressing immortalized prostate cancer cell line, over a range of concentrations and shear stresses relevant to immunocapture. Our results show that J591 outperforms J415 and a mix of the two for prostate cancer capture, and that capture performance saturates following incubation with antibody concentrations of 10 micrograms per milliliter.


CTC Microfluidic PSMA J591 Circulating tumor cell Prostate cancer 



Prostate Cancer


Prostate Circulating Tumor Cell


Circulating Tumor Cell


Epithelial Cell Adhesion Molecule


Epithelial-to-Mesenchymal Transition


Prostate Specific Membrane Antigen


Castrate Resistant Prostate Cancer



The work described was partially supported by the Cornell Center on the Microenvironment & Metastasis through Award Number U54CA143876 from the National Cancer Institute, the Cornell NSF GK-12 program and the Cornell-Sloan Fellowship (S.S.). The authors thank LJ Bonassar for use of the plate reader.


  1. W.J. Allard, J. Matera et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)CrossRefGoogle Scholar
  2. H.J.K. Ananias, M.C. van den Heuvel et al., Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. Prostate 69(10), 1101–1108 (2009)CrossRefGoogle Scholar
  3. N.H. Bander, D.M. Nanus et al., Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin. Oncol. 30(5), 667–676 (2003)CrossRefGoogle Scholar
  4. S.S. Chang, D.S. O’Keefe et al., Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res. 5(10), 2674–2681 (1999a)Google Scholar
  5. S.S. Chang, V.E. Reuter et al., Five different anti-Prostate-specific Membrane Antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 59(13), 3192–3198 (1999b)Google Scholar
  6. S.J. Cohen, C.J.A. Punt et al., Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26(19), 3213–3221 (2008)CrossRefGoogle Scholar
  7. F.A.W. Coumans, C.J.M. Doggen et al., All circulating EpCAM+CK+CD45- objects predict overall survival in castration-resistant prostate cancer. Ann. Oncol. 21(9), 1851–1857 (2010)CrossRefGoogle Scholar
  8. D.C. Danila, G. Heller et al., Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 13(23), 7053–7058 (2007)CrossRefGoogle Scholar
  9. D.C. Danila, M. Fleisher et al., Circulating tumor cells as biomarkers in prostate cancer. Clin. Cancer Res. 17(12), 3903–3912 (2011)CrossRefGoogle Scholar
  10. M.I. Davis, M.J. Bennett et al., Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl. Acad. Sci. U. S. A. 102(17), 5981–5986 (2005)CrossRefGoogle Scholar
  11. J.S. de Bono, H.I. Scher et al., Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14(19), 6302–6309 (2008)CrossRefGoogle Scholar
  12. J.P. Gleghorn, E.D. Pratt et al., Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1), 27–29 (2010)CrossRefGoogle Scholar
  13. J. Gostner, D. Fong et al., Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer 11(1), 45 (2011)CrossRefGoogle Scholar
  14. A. Gradilone, C. Raimondi, et al. Circulating tumor cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J. Cell. Mol. Med. (2011): no-no.Google Scholar
  15. M.C. Haffner, I.E. Kronberger et al., Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum. Pathol. 40(12), 1754–1761 (2009)CrossRefGoogle Scholar
  16. J.S. Horoszewicz, E. Kawinski et al., Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 7(5B), 927–935 (1987)Google Scholar
  17. R.S. Israeli, W.H. Miller et al., Sensitive tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer Res. 54(24), 6306–6310 (1994a)Google Scholar
  18. R.S. Israeli, C.T. Powell et al., Expression of the prostate-specific membrane antigen. Cancer Res. 54(7), 1807–1811 (1994b)Google Scholar
  19. B.J. Kirby, A.R. Wheeler et al., Programmable modification of cell adhesion and zeta potential in silica microchips. Lab Chip 3(1), 5–10 (2003)CrossRefGoogle Scholar
  20. R.T. Krivacic, A. Ladanyi et al., A rare-cell detector for cancer. Proc. Natl. Acad. Sci. U. S. A. 101(29), 10501–10504 (2004)CrossRefGoogle Scholar
  21. T. Kusumi, T. Koie et al., Immunohistochemical detection of carcinoma in radical prostatectomy specimens following hormone therapy. Pathol. Int. 58(11), 687–694 (2008)CrossRefGoogle Scholar
  22. H. Liu, P. Moy et al., Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 57(17), 3629–3634 (1997)Google Scholar
  23. S. Maheswaran, D.A. Haber, Circulating tumor cells: a window into cancer biology and metastasis. Curr. Opin. Genet. Dev. 20(1), 96–99 (2010)CrossRefGoogle Scholar
  24. S. Mannweiler, P. Amersdorfer et al., Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) expression in prostate carcinoma with distant metastasis. Pathol. Oncol. Res. 15(2), 167–172 (2009)CrossRefGoogle Scholar
  25. M. Mego, U. De Giorgi et al., Circulating tumor cells in metastatic inflammatory breast cancer. Ann. Oncol. 20(11), 1824–1828 (2009)CrossRefGoogle Scholar
  26. J.R. Mesters, C. Barinka et al., Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 25(6), 1375–1384 (2006)CrossRefGoogle Scholar
  27. S. Minner, C. Wittmer et al., High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate 71(3), 281–288 (2011)CrossRefGoogle Scholar
  28. J.G. Moreno, M.C. Miller et al., Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology 65(4), 713–718 (2005)CrossRefGoogle Scholar
  29. M. Munz, P.A. Baeuerle et al., The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res. 69(14), 5627–5629 (2009)CrossRefGoogle Scholar
  30. G.P. Murphy, A.-A.A. Elgamal et al., Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen. Cancer 83(11), 2259–2269 (1998)CrossRefGoogle Scholar
  31. S.K. Murthy, A. Sin et al., Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20(26), 11649 (2004)CrossRefGoogle Scholar
  32. S. Nagrath, L.V. Sequist et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–1239 (2007)CrossRefGoogle Scholar
  33. D. Olmos, H.T. Arkenau et al., Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann. Oncol. 20(1), 27–33 (2009)CrossRefGoogle Scholar
  34. K. Pantel, C. Alix-Panabières, Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol. Med. 16(9), 398–406 (2010)CrossRefGoogle Scholar
  35. S. Perner, M.D. Hofer et al., Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum. Pathol. 38(5), 696–701 (2007)CrossRefGoogle Scholar
  36. E.D. Pratt, C. Huang et al., Rare cell capture in microfluidic devices. Chem. Eng. Sci. 66(7), 1508–1522 (2011)CrossRefGoogle Scholar
  37. A.K. Rajasekaran, G. Anilkumar et al., Is prostate-specific membrane antigen a multifunctional protein? Am. J. Physiol. Cell Physiol. 288(5), C975–C981 (2005)CrossRefGoogle Scholar
  38. S. Riethdorf, K. Pantel, Advancing personalized cancer therapy by detection and characterization of circulating carcinoma cells Circulating tumor cells in cancer patients Riethdorf & Pantel. Ann. N. Y. Acad. Sci. 1210(1), 66–77 (2010)CrossRefGoogle Scholar
  39. J.S. Ross, C.E. Sheehan et al., Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res. 9(17), 6357–6362 (2003)Google Scholar
  40. H.I. Scher, X. Jia et al., Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 10(3), 233–239 (2009)CrossRefGoogle Scholar
  41. D.R. Shaffer, M.A. Leversha et al., Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin. Cancer Res. 13(7), 2023–2029 (2007)CrossRefGoogle Scholar
  42. S. Shiah, K. Tai et al., Epigenetic regulation of EpCAM in tumor invasion and metastasis. J. Canc. Mol. 3, 165–168 (2008)Google Scholar
  43. D.A. Silver, I. Pellicer et al., Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3(1), 81–85 (1997)Google Scholar
  44. A. Sin, S.K. Murthy et al., Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes. Biotechnol. Bioeng. 91(7), 816–826 (2005)CrossRefGoogle Scholar
  45. P.M. Smith-Jones, S. Vallabahajosula et al., In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 60(18), 5237–5243 (2000)Google Scholar
  46. R.L. Sokoloff, K.C. Norton et al., A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate 43(2), 150–157 (2000)CrossRefGoogle Scholar
  47. S.L. Stott, C.-H. Hsu et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. 107(43), 18392–18397 (2010a)CrossRefGoogle Scholar
  48. S.L. Stott, R.J. Lee et al., Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl. Med. 2(25), 25ra23 (2010b)CrossRefGoogle Scholar
  49. S.D. Sweat, A. Pacelli et al., Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52(4), 637–640 (1998)CrossRefGoogle Scholar
  50. J.K. Trover, M.L. Beckett et al., Detection and characterization of the prostate-specific membrane antigen (PSMA) in tissue extracts and body fluids. Int. J. Cancer 62(5), 552–558 (1995)CrossRefGoogle Scholar
  51. S. Usami, H.H. Chen et al., Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21(1), 77–83 (1993)CrossRefGoogle Scholar
  52. G.L. Wright, C. Haley et al., Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. 1(1), 18–28 (1995)CrossRefGoogle Scholar
  53. J.G.L. Wright, B. Mayer Grob et al., Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48(2), 326–334 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Steven M. Santana
    • 1
  • He Liu
    • 2
  • Neil H. Bander
    • 2
  • Jason P. Gleghorn
    • 3
  • Brian J. Kirby
    • 1
    • 4
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Laboratory of Urological OncologyWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.School of Engineering and Applied Science, Department of Chemical and Biological EngineeringPrinceton UniversityPrincetonUSA
  4. 4.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations