Biomedical Microdevices

, Volume 14, Issue 1, pp 165–178 | Cite as

MRI driven magnetic microswimmers

  • Gábor Kósa
  • Péter Jakab
  • Gábor Székely
  • Nobuhiko Hata


Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach.


Capsule endoscopy MRI Propulsion Microrobot Magnetic actuator 


  1. J.J. Abbott, K.E. Peyer, M.C. Lagomarsino, L. Zhang, L. Dong, I.K. Kaliakatsos, B.J. Nelson, Int. J. Robot. Res. 28, 1434–1447 (2009)CrossRefGoogle Scholar
  2. B. Behkam, M. Sitti, Appl. Phys. Lett. 93, 223901 (2008)CrossRefGoogle Scholar
  3. D.J. Bell, S. Leutenegger, K.M. Hammar, L.X. Dong, B.J. Nelson, IEEE International Conference on Robotics and Automation, 1128–1133 (2007)Google Scholar
  4. M. Berris, M. Shoham, Comput. Aided Surg. 11, 175–180 (2006)Google Scholar
  5. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862–865 (2005)CrossRefGoogle Scholar
  6. Ö. Ekeberg, Biol. Cybern. 69, 363–374 (1993)MATHGoogle Scholar
  7. G.S. Fischer, I. Iordachita, C. Csoma, J. Tokuda, S.P. DiMaio, C.M. Tempany, N. Hata, G. Fichtinger, IEEE ASME Trans. Mechatron. 13, 295–305 (2008)CrossRefGoogle Scholar
  8. S. Guo, Q. Pan, M. Khamesee, Microsystem Technologies 14, 307–314 (2008)CrossRefGoogle Scholar
  9. S.X. Guo, Y.M. Ge, L.F. Li, S. Liu, IEEE ICMA 2006: Proceeding of the 2006 IEEE International Conference on Mechatronics and Automation, Vols 1–3, Proceedings, 249254 (2006)Google Scholar
  10. N. Hata, J. Tokuda, S. Hurwitz, S. Morikawa, J. Magn. Reson. Imaging 27, 1130–1138 (2008)CrossRefGoogle Scholar
  11. T. Honda, K.I. Arai, K. Ishiyama, Magnetics. IEEE Transactions on Magnetics 32, 5085–5087 (1996)CrossRefGoogle Scholar
  12. A. International, Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants. vol. F 2119 – 01 (2006)Google Scholar
  13. G. Kosa, Micro Robots for Medical Applications, in Surgical Robotics - Systems, Applications, and Visions, Hannaford B., Satava R., and Rosen J., Eds., 2010 (2010)Google Scholar
  14. G. Kosa, P. Jakab, N. Hata, F. Jolesz, Z. Neubach, M. Shoham, M. Zaaroor, G. Szekely, Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. Proceedings of the 2nd IEEE RAS & EMBS International Conference on, 258–263 (2008a)Google Scholar
  15. G. Kosa, P. Jakab, F. Jolesz, N. Hata, Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2922–2927 (2008b)Google Scholar
  16. G. Kosa, M. Shoham, M. Zaaroor, IEEE Trans. Robot. 23, 137–150 (2007)CrossRefGoogle Scholar
  17. G. Kosa, G. Szekely, Hamlyn Symposium for Medical Robotics, London, (2010)Google Scholar
  18. E. Lauga, Physical Review E 75, 041916 (2007)MathSciNetCrossRefGoogle Scholar
  19. W. Liu, X. Jia, F. Wang, Z. Jia, Sensor Actuator Phys. 160, 101–108 (2010)CrossRefGoogle Scholar
  20. S. Martel, O. Felfoul, J.-B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, N. Tabatabaei, Int. J. Robot. Res. 28, 1169–1182 (2009)CrossRefGoogle Scholar
  21. J.B. Mathieu, G. Beaudoin, S. Martel, Biomedical Engineering. IEEE Transactions on Biomedical Engineering 53, 292–299 (2006)CrossRefGoogle Scholar
  22. J.B. Mathieu, S. Martel, L.H. Yahia, G. Soulez, G. Beaudoin, Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 4, 3419–3422 (2003)Google Scholar
  23. L. Meirovitch, Elements of Vibration Analysis (Tokyo, McGraw-Hill, 1975)MATHGoogle Scholar
  24. A. Menciassi, P. Valdastri, K. Harada, P. Dario, Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 238–243 (2008)Google Scholar
  25. A. Moglia, A. Menciassi, M.O. Schurr, P. Dario, Biomed. Microdevices 9, 235–243 (2007)CrossRefGoogle Scholar
  26. A.C. Nayfeh, D.T. Mook, Nonlinear Oscillations (New York, Wiley and Sons, 1979)MATHGoogle Scholar
  27. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  28. P. Pouponneau, J.-C. Leroux, G. Soulez, L. Gaboury, S. Martel, Biomaterials 32, 3481–3486 (2011)CrossRefGoogle Scholar
  29. M. Sendoh, K. Ishiyama, K.I. Arai, Magnetics. IEEE Transactions on Magnetics 39, 3232–3234 (2003)Google Scholar
  30. K.B. Yesin, K. Vollmers, B.J. Nelson, Int. J. Rob. Res. 25, 527–536 (2006)CrossRefGoogle Scholar
  31. Z. Yi, W. Qimin, Z. Peiqiang, W. Xiaohua, M. Tao, Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, 1746–1750 vol.2 (2004)Google Scholar
  32. L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Nano Lett. 9, 3663–3667 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gábor Kósa
    • 1
  • Péter Jakab
    • 2
  • Gábor Székely
    • 3
  • Nobuhiko Hata
    • 2
  1. 1.School of Mechanical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Department of RadiologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland

Personalised recommendations