Biomedical Microdevices

, Volume 14, Issue 1, pp 131–143

Microbubble transport through a bifurcating vessel network with pulsatile flow

  • Doug T. Valassis
  • Robert E. Dodde
  • Brijesh Esphuniyani
  • J. Brian Fowlkes
  • Joseph L. Bull
Article

Abstract

Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.

Keywords

Gas embolotherapy Air embolism Decompression sickness Bubble dynamics Bubble logic Bubble 

References

  1. A.R. Abate, D.A. Weitz, Faster multiple emulsification with drop splitting. Lab On A Chip 11(11), 1911–1915 (2011)CrossRefGoogle Scholar
  2. C.N. Baroud, F. Gallaire, R. Dangla, Dynamics of microfluidic droplets. Lab On A Chip 10(16), 2032–2045 (2010)CrossRefGoogle Scholar
  3. M.D. Behzad, H. Seyed-allaei, and M.R. Ejtehadi, Simulation of droplet trains in microfluidic networks. Phys. Rev. E 82(3) (2010)Google Scholar
  4. A.B. Branger, D.M. Eckmann, Theoretical and experimental intravascular gas embolism absorption dynamics. J. Appl. Physiol. 87(4), 1287–1295 (1999)Google Scholar
  5. A.B. Branger, D.M. Eckmann, Accelerated arteriolar gas embolism reabsorption by an exogenous surfactant. Anesthesiology 96(4), 971–979 (2002)CrossRefGoogle Scholar
  6. A.B. Branger, C.J. Lambertsen, D.M. Eckmann, Cerebral gas embolism absorption during hyperbaric therapy: theory. J. Appl. Physiol. 90(2), 593–600 (2001)Google Scholar
  7. F.P. Bretherton, The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188 (1961)MathSciNetMATHCrossRefGoogle Scholar
  8. M.-E. Brett, S. Zhao, J.L. Stoia, D.T. Eddington, Controlling flow in microfluidic channels with a manually actuated pin valve. Biomed. Microdevices 13(4), 633–639 (2011)CrossRefGoogle Scholar
  9. J.L. Bull, Cardiovascular bubble dynamics. Crit. Rev. Biomed. Eng. 33(4), 299–346 (2005)CrossRefGoogle Scholar
  10. J.L. Bull, The application of microbubbles for targeted drug delivery. Expert Opin. Drug Deliv. 4(5), 475–493 (2007)MathSciNetCrossRefGoogle Scholar
  11. J.L. Bull, A.J. Hunt, E. Meyhofer, A theoretical model of a molecular-motor-powered pump. Biomed. Microdevices 7(1), 21–33 (2005)CrossRefGoogle Scholar
  12. A.J. Calderon, J.B. Fowlkes, J.L. Bull, Bubble splitting in bifurcating tubes: a model study of cardiovascular gas emboli transport. J. Appl. Physiol. 99, 479–487 (2005)CrossRefGoogle Scholar
  13. A.J. Calderon, Y. Heo, N. Futai, S. Takayama, J.B. Fowlkes and J.L. Bull, A microfluidic model of bubble lodging in microvessel bifurcations. Appl. Phys. Lett. 89(24): Art. No. 244103 (2006)Google Scholar
  14. A.J. Calderon, B. Eshpuniyani, J.B. Fowlkes and J.L. Bull, A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation. Phys. Fluids 22(6): Art. No. 061902 (2010)Google Scholar
  15. A. Carlson, M. Do-Quang, G. Amberg, Droplet dynamics in a bifurcating channel. Int. J. Multiphas. Flow 36(5), 397–405 (2010)CrossRefGoogle Scholar
  16. C. Chung, M. Lee, K. Char, K.H. Ahn, S.J. Lee, Droplet dynamics passing through obstructions in confined microchannel flow. Microfluidics Nanofluidics 9(6), 1151–1163 (2010)CrossRefGoogle Scholar
  17. R. Di Segni, A.T. Young, Q. Zhong, W.R. Castaneda-Zuniga, Embolotherapy: agents, equipment, and techniques, in Interventional radiology, ed. by W.R. Castaneda-Zuniga (Williams and Wilkins, Baltimore, 1997), pp. 81–84Google Scholar
  18. D.M. Eckmann, A.B. Branger, D.P. Cavanagh, Gas embolism. N. Engl. J. Med. 342(26), 2000–2001 (2000)CrossRefGoogle Scholar
  19. D.T. Eddington, D.J. Beebe, A valved responsive hydrogel microdispensing device with integrated pressure source. J. Microelectromech. Syst. 13(4), 586–593 (2004)CrossRefGoogle Scholar
  20. I.R. Epstein, Can droplets and bubbles think? Science 315(5813), 775–776 (2007)CrossRefGoogle Scholar
  21. B. Eshpuniyani, J.B. Fowlkes, J.L. Bull, A bench top experimental model of bubble transport in multiple arteriole bifurcations. Int. J. Heat Fluid Flow 26(6), 865–872 (2005)CrossRefGoogle Scholar
  22. B. Eshpuniyani, J.B. Fowlkes, J.L. Bull, A boundary element model of microbubble sticking and sliding in the microcirculation. Int. J. Heat Mass Trans. 51, 5700–5711 (2008)MATHCrossRefGoogle Scholar
  23. M.J. Fuerstman, P. Garstecki, G.M. Whitesides, Coding/decoding and reversibility of droplet trains in microfluidic networks. Science 315(5813), 828–832 (2007)CrossRefGoogle Scholar
  24. Y.C. Fung, Biomechanics: circulation (New York, Springer, 1997)Google Scholar
  25. A. Galion, A.H. Do, G.Y. Chang, Lateralized infarction in cerebral air embolism due to patient positioning. J. Clin. Neurosci. 17(7), 943–944 (2010)CrossRefGoogle Scholar
  26. W. Gu, X.Y. Zhu, N. Futai, B.S. Cho, S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc. Natl. Acad. Sci. USA 101(45), 15861–15866 (2004)CrossRefGoogle Scholar
  27. H. Gu, M.H.G. Duits, F. Mugele, Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12(4), 2572–2597 (2011)CrossRefGoogle Scholar
  28. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward, "SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers". ACM Transactions on Mathematical Software (TOMS) 31(3), 363–396 (2005)Google Scholar
  29. D. Huh, Y.C. Tung, H.H. Wei, J.B. Grotberg, S.J. Skerlos, K. Kurabayashi, S. Takayama, Use of air-liquid two-phase flow in hydrophobic microfluidic channels for disposable flow cytometers. Biomed. Microdevices 4(2), 141–149 (2002)CrossRefGoogle Scholar
  30. D. Huh, H. Fujioka, Y.-C. Tung, N. Futai, R. Paine, J.B. Grotberg III, S. Takayama, Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl. Acad. Sci. USA 104(48), 18886–18891 (2007)CrossRefGoogle Scholar
  31. O.D. Kripfgans, J.B. Fowlkes, D.L. Miller, O.P. Eldevik, P.L. Carson, Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. 26(7), 1177–1189 (2000)CrossRefGoogle Scholar
  32. O.D. Kripfgans, J.B. Fowlkes, M. Woydt, O.P. Eldevik, P.L. Carson, In vivo droplet vaporization for occlusion therapy and phase aberration correction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 49(6), 726–738 (2002)CrossRefGoogle Scholar
  33. O.D. Kripfgans, M.L. Fabiilli, P.L. Carson, J.B. Fowlkes, On the acoustic vaporization of micrometer-sized droplets. J. Acoust. Soc. Am. 116(1), 272–281 (2004)CrossRefGoogle Scholar
  34. O.D. Kripfgans, C.M. Orifici, P.L. Carson, K.A. Ives, O.P. Eldevik, J.B. Fowlkes, Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 52(7), 1101–1110 (2005)CrossRefGoogle Scholar
  35. D. Malsch, N. Gleichmann, M. Kielpinski, G. Mayer, T. Henkel, D. Mueller, V. van Steijn, C.R. Kleijn, M.T. Kreutzer, Dynamics of droplet formation at T-shaped nozzles with elastic feed lines. Microfluidics Nanofluidics 8(4), 497–507 (2010)CrossRefGoogle Scholar
  36. J. Melin, S.R. Quake, Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)CrossRefGoogle Scholar
  37. H.A. Nieuwstadt, R. Seda, D.S. Li, J.B. Fowlkes, J.L. Bull, Microfluidic particle sorting utilizing inertial lift force. Biomed. Microdevices 13(1), 97–105 (2011)CrossRefGoogle Scholar
  38. C.A. Powell, M.D. Savage, J.T. Guthrie, Computational simulation of the printing of Newtonian liquid from a trapezoidal cavity. Int. J. Numer. Meth. Heat Fluid Flow 12(4), 338–355 (2002)MATHCrossRefGoogle Scholar
  39. C. Pozrikidis (ed.), Modeling and simulation of capsules and biological cells (Chapman & Hall/CRC, Boca Raton, 2003)MATHGoogle Scholar
  40. C. Pozrikidis, Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 33(2), 165–178 (2005)CrossRefGoogle Scholar
  41. M. Prakash, J.W.M. Bush, Interfacial propulsion by directional adhesion. Int. J. Non-Lin. Mech. 46(4), 607–615 (2011)CrossRefGoogle Scholar
  42. M. Prakash, N. Gershenfeld, Microfluidic bubble logic. Science 315(5813), 832–835 (2007)CrossRefGoogle Scholar
  43. J.B. Prettyman, D.T. Eddington, Leveraging stimuli responsive hydrogels for on/off control of mixing. Sensor Actuator B-Chem. 157(2), 722–726 (2011)CrossRefGoogle Scholar
  44. A. Qamar, Z.Z. Wong, J.B. Fowlkes and J.L. Bull, Dynamics of acoustic droplet vaporization in gas embolotherapy. Appl. Phys. Lett. 96(14): Art. No. 143702 (2010)Google Scholar
  45. S. Samuel, M.L. Fabiilli, J.L. Bull and J.B. Fowlkes, First in vivo observations of bubble lodging, vessel occlusion, and bubble dislodging due to acoustic droplet vaporization. IEEE Ultrasonics Symposium, (2010)Google Scholar
  46. T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977–1026 (2005)CrossRefGoogle Scholar
  47. V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W.F. Anderson, S.R. Quake, Scaling properties of a low-actuation pressure microfluidic valve. J. Appl. Phys. 95(1), 393–398 (2004)CrossRefGoogle Scholar
  48. H. Tavana, P. Zamankhan, P.J. Christensen, J.B. Grotberg, S. Takayama, Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed. Microdevices 13(4), 731–742 (2011)CrossRefGoogle Scholar
  49. A.B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, W.T.S. Huck, Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49(34), 5846–5868 (2010)Google Scholar
  50. L. Wang, M. Zhang, J. Li, X. Gong, W. Wen, Logic control of microfluidics with smart colloid. Lab On A Chip 10(21), 2869–2874 (2010)CrossRefGoogle Scholar
  51. G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, D.E. Ingber, Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001)CrossRefGoogle Scholar
  52. Z.Z. Wong, O.D. Kripfgans, A. Qamar, J.B. Fowkes, J.L. Bull, Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging. Soft Matter 7(8), 4009–4016 (2011)CrossRefGoogle Scholar
  53. T. Ye, J.L. Bull, Direct numerical simulations of micro-bubble expansion in gas embolotherapy. J. Biomech. Eng. 126(6), 745–759 (2004)CrossRefGoogle Scholar
  54. T. Ye, J.L. Bull, Microbubble expansion in a flexible tube. J. Biomech. Eng. 128(4), 554–563 (2006)CrossRefGoogle Scholar
  55. M. Zhang, J. Wu, X. Niu, W. Wen and P. Sheng, Manipulations of microfluidic droplets using electrorheological carrier fluid. Phys. Rev. E 78(6) (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Doug T. Valassis
    • 1
  • Robert E. Dodde
    • 1
  • Brijesh Esphuniyani
    • 1
  • J. Brian Fowlkes
    • 1
  • Joseph L. Bull
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations