Biomedical Microdevices

, Volume 14, Issue 1, pp 83–93 | Cite as

A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis

  • Zhangming Wu
  • Khujesta Choudhury
  • Helen R. Griffiths
  • Jinwu Xu
  • Xianghong Ma
Article

Abstract

A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.

Keywords

Biosensors Microscale membrane Distributive sensing Neural network Endothelial cell line 

Notes

Acknowledgement

The authors would like to acknowledge the funding support from the EPSRC in the UK.

References

  1. T. Alava, F. Mathieu, P. Rameil, Y. Morel, C. Soyer, D. Remiens, L. Nicu, Piezoelectric-actuated, piezoresistive-sensed circular micromembranes for label-free biosensing applications. Appl. Phys. Lett. 97(9), 093703–093703–3 (2010). ISSN 00036951Google Scholar
  2. C. Ayela, F. Vandevelde, D. Lagrange, K. Haupt, L. Nicu, Combining resonant piezoelectric micromembranes with molecularly imprinted polymers. Angew. Chem. Int. Ed. 46(48), 9271–9274 (2007). ISSN 1521-3773CrossRefGoogle Scholar
  3. E.T. Carlen, M.S. Weinberg, C.E. Dub, A.M. Zapata, J.T. Borenstein, Micromachined silicon plates for sensing molecular interactions. Appl. Phys. Lett. 89(17), 173123–173124 (2006)CrossRefGoogle Scholar
  4. L. Carrascosa, M. Moreno, M. Alvarez, L. Lechuga, Nanomechanical biosensors: a new sensing tool. TRAC-Trend Anal. Chem. 25(3), 196–206 (2006)CrossRefGoogle Scholar
  5. Z. Chaudhry, A. Ganino, Damage detection using neural networks: An initial experimental study on debonded beams. J. Intell. Mater. Syst. Struct. 5(4), 585–589 (1994)CrossRefGoogle Scholar
  6. B.M. Cowie, D.J. Webb, B. Tam, P. Slack, P.N. Brett, Distributive tactile sensing using fibre bragg grating sensors for biomedical applications. BioRob. 2006 2006, 312–317 (2006)Google Scholar
  7. M. Elliott, X. Ma, P. Brett, Tracking the position of an unknown moving load along a plate using the distributive sensing method. Sens. Actuators A Phys. 138(1), 28–36 (2007)CrossRefGoogle Scholar
  8. A. Gupta, D. Akin, R. Bashir, Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84(11), 1976–1978 (2004)CrossRefGoogle Scholar
  9. B. Ilic, Y. Yang, H. Craighead, Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85(13), 2604–2606 (2004)CrossRefGoogle Scholar
  10. N. Lavrik, M. Sepaniak, P. Datskos, Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)CrossRefGoogle Scholar
  11. J. Lee, S. Kim, Structural damage detection in the frequency domain using neural networks. J. Intell. Mater. Syst. Struct. 18(8), 785–792 (2007)CrossRefGoogle Scholar
  12. R. Levin, N. Lieven, Dynamic finite element model updating using neural networks. J. Sound Vib. 210(5), 593–607 (1998)CrossRefGoogle Scholar
  13. J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, R. Maeda, in High Quality Factor Silicon Cantilever Driven by pzt Actuator for Resonant Based Mass Detection. 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (2008), pp. 60–65Google Scholar
  14. J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, R. Maeda, Characterization and improvement on quality factor of microcantilevers with self-actuation and self-sensing capability. Microelectron. Eng. 86(4–6), 1208–1211 (2009)CrossRefGoogle Scholar
  15. X. Ma, P. Brett, The performance of a 1-D distributive tactile sensing system for detecting the position, weight, and width of a contacting load. IEEE Trans. Instrum. Meas. 51(2), 331–336 (2002)CrossRefGoogle Scholar
  16. X. Ma, A. Vakakis, L. Bergman, Karhunen–Loeve analysis and order reduction of the transient dynamics of linear coupled oscillators with strongly nonlinear end attachments. J. Sound Vib. 309(3–5), 569–687 (2008)CrossRefGoogle Scholar
  17. S. Mohanty, E. Kougianos, Biosensors: a tutorial review. IEEE Potentials 25(2), 35–40 (2006)CrossRefGoogle Scholar
  18. Y. Ni, X. Zhou, J. Ko, Experimental investigation of seismic damage identification using pca-compressed frequency response functions and neural networks. J. Sound Vib. 290(1–2), 242–263 (2006)CrossRefGoogle Scholar
  19. L. Nicu, C. Ayela, Micromachined piezoelectric membranes with high nominal quality factors in newtonian liquid media: a lamb’s model validation at the microscale. Sens. Actuators B Chem. 123(2), 860–868 (2007)CrossRefGoogle Scholar
  20. L. Nicu, M. Guirardel, F. Chambosse, P. Rougerie, S. Hinh, E. Trevisiol, J.-M. Francois, J.-P. Majoral, A.-M. Caminade, E. Cattan, C. Bergaud, Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin-gold nanoparticles interaction with biotinylated DNA. Sens. Actuators B Chem. 110(1), 125–136 (2005). ISSN 0925-4005CrossRefGoogle Scholar
  21. R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechanical cantilever-based biosensors. Sens. Actuators B Chem. 79(2–3), 115–126 (2001)CrossRefGoogle Scholar
  22. K.W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, T.S. Kim, Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20(10), 1932–1938 (2005)CrossRefGoogle Scholar
  23. Z. Wu, X. Ma, P. Brett, J. Xu, Vibration analysis of submerged micro rectangular plates with distributed mass loading. Proc. R. Soc. A Mat. 465(A), 205–216 (2009)Google Scholar
  24. Z. Wu, M.T. Wright, X. Ma, The experimental evaluation of the dynamics of fluid-loaded microplates. J. Micromechanics Microengineering 20(7) 075034 (2010)CrossRefGoogle Scholar
  25. T. Xu, Z. Wang, J. Miao, L. Yu, C. Li, Micro-machined piezoelectric membrane-based immunosensor array. Biosens. Bioelectron. 24(4), 638–432 (2008)CrossRefGoogle Scholar
  26. C. Zang, M. Imergun, Structural damage detection using artificial neural networks and measured frf data reduced via principal component prediction. J. Sound Vib. 242(5), 813–827 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhangming Wu
    • 1
  • Khujesta Choudhury
    • 1
  • Helen R. Griffiths
    • 1
  • Jinwu Xu
    • 2
  • Xianghong Ma
    • 1
  1. 1.School of Engineering and Applied ScienceAston UniversityBirminghamUK
  2. 2.University of Science and Technology BeijingBeijingPeople’s Republic of China

Personalised recommendations