Advertisement

Biomedical Microdevices

, Volume 13, Issue 6, pp 1089–1094 | Cite as

A resettable dynamic microarray device

  • Kosuke Iwai
  • Wei-Heong Tan
  • Hirotaka Ishihara
  • Shoji TakeuchiEmail author
Article

Abstract

This paper describes a simple reusable device that hydrodynamically traps a large number of beads in an array. Guiding pillars allow us to release the trapped beads by simply reversing the flow direction. The trap and reset operations are extremely simple, robust and highly efficient. We analyzed the path of the beads in a microchannel with pillars to optimize the design of the device. We succeeded in arraying hundreds of 100 μm microbeads, subsequently released them in a few minutes, and demonstrated multiple experiments with a single device.

Keywords

Dynamic microarray Microbeads handling Microfluidics Reusable device Lab-on-a-chip 

Notes

Acknowledgement

We thank Dai Nippon Printing Co., Ltd. for manufacturing devices made of glass-silicon-glass.

Supplementary material

ESM movie 1

Real-time movie showing the clogging of polystyrene microbeads (98.7 μm in diameter) with backward flow in the previous dynamic microarray device (Tan and Takeuchi 2007) (MPG 2430 kb)

ESM movie 2

Real-time movie showing the trapping of polystyrene microbeads (98.7 μm in diameter) with forward flow. The flow rate ratio of trapping stream and main stream is 2.73 (MPG 2002 kb)

ESM movie 3

Real-time movie showing the releasing of polystyrene microbeads (98.7 μm in diameter). The flow rate ratio of trapping stream and main stream is 2.18 (MPG 2866 kb)

ESM movie 4

Real-time movie showing the demonstration of arraying 100 microbeads (98.7 μm in diameter) with forward flow, retrieving single microbead with optically generated bubble (Tan and Takeuchi 2008), and releasing the trapped microbeads with backward flow in a single device. The flow rate ratio of trapping stream and main stream is 2.18. The device is made of glass and silicon with aluminum pads at the outlets of the trapping spots for generating bubbles, which is fabricated through the foundry service of Dai Nippon Printing Co., Ltd. (MPG 8538 kb)

References

  1. C. Amador, A. Gavriilidis, P. Angeli, Biochem. Eng. J. 101, 379 (2004)Google Scholar
  2. D. Di Carlo, L.Y. Wu, L.P. Lee, Lab Chip 6, 1445 (2006)CrossRefGoogle Scholar
  3. D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)CrossRefGoogle Scholar
  4. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 23, 4974 (1998)CrossRefGoogle Scholar
  5. M. Dufva, J. Pettersen, L. Poulsen, Anal. Bioanal. Chem. 395, 669 (2009)CrossRefGoogle Scholar
  6. J.-P. Frimat, M. Becker, Y.-Y. Chiang, U. Marggraf, D. Janasek, J.G. Hengstler, J. Franzke, J. West, Lab Chip 11, 231 (2011)CrossRefGoogle Scholar
  7. J.P. Hartnett, M. Kostic, Int. Comm. Heat Mass Transfer 17, 59 (1990)CrossRefGoogle Scholar
  8. L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Sicence 304, 987 (2004)CrossRefGoogle Scholar
  9. A. Huebner, D. Bratton, G. Whyte, M. Yang, A.J. deMello, C. Abell, F. Hollfelder, Lab Chip 9, 692 (2009)CrossRefGoogle Scholar
  10. S.H. Hwang, A. Lehman, X. Cong, M.M. Olmstead, K.S. Lam, C.B. Lebrilla, M.J. Kurth, Org. Lett. 6, 3829 (2004)CrossRefGoogle Scholar
  11. H. Kimura, H. Nakamura, K. Iwai, T. Yamamoto, S. Takeuchi, Y. Sakai, T. Fujii, Int. J. Artif. Organs 32, 403 (2009)Google Scholar
  12. K.S. Lam, S.E. Salmon, E.M. Hersh, V. Hruby, W.M. Kazmierski, R.J. Knapp, Nature 354, 82 (1991)CrossRefGoogle Scholar
  13. K.S. Lam, R. Liu, S. Miyamoto, A.L. Lehman, J.M. Tuscano, Accounts Chem. Res. 36, 370 (2003)CrossRefGoogle Scholar
  14. N. Li, C.M. Ho, Lab Chip 8, 2105 (2008)CrossRefGoogle Scholar
  15. W.H. Robinson, C. DiGennaro, W. Hueber, B.B. Haab, M. Kamachi, E.J. Dean, S. Fournel, D. Fong, M.C. Genovese, H.E. Neuman de Vegvar, K. Skriner, D.L. Hirschberg, R.I. Morris, S. Muller, G.J. Pruijin, W.J. Venrooij, J.S. Smolen, P.O. Brown, L. Steinman, P.J. Utz, Nat. Med. 8, 295 (2002)CrossRefGoogle Scholar
  16. A. Rosenthal, J. Voldman, Biophys. J. 88, 2193 (2005)CrossRefGoogle Scholar
  17. J. Schlessinger, Nat. Biotechnol. 3, 232 (2002)CrossRefGoogle Scholar
  18. W. Shi, J. Qin, N. Ye, B. Lin, Lab Chip 8, 1432 (2008)CrossRefGoogle Scholar
  19. A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Nat. Methods 6, 147 (2009)CrossRefGoogle Scholar
  20. W.-H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. 104, 1146 (2007)CrossRefGoogle Scholar
  21. W.-H. Tan, S. Takeuchi, Lab Chip 8, 259 (2008)CrossRefGoogle Scholar
  22. T. Teshima, H. Ishihara, K. Iwai, A. Adachi, S. Takeuchi, Lab Chip 10, 2443 (2010)CrossRefGoogle Scholar
  23. J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, Anal. Chem. 74, 3984 (2002)CrossRefGoogle Scholar
  24. Z. Wang, M.C. Kim, M. Marquez, T. Thorsen, Lab Chip 7, 740 (2007)CrossRefGoogle Scholar
  25. K. Yoshimoto, M. Ichino, Nagasaki Yukio, Lab Chip 9, 1286 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kosuke Iwai
    • 1
  • Wei-Heong Tan
    • 1
  • Hirotaka Ishihara
    • 1
  • Shoji Takeuchi
    • 1
    Email author
  1. 1.Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS)The University of TokyoBunkyoJapan

Personalised recommendations