Biomedical Microdevices

, Volume 13, Issue 5, pp 949–953 | Cite as

Real-time monitoring of cell viability using direct electrical measurement with a patch-clamp microchip

  • Pushparaj Pathak
  • Hong Zhao
  • Zhongcheng Gong
  • Fang Nie
  • Tianhua Zhang
  • Kemi Cui
  • Zhiyong Wang
  • Stephen T. C. Wong
  • Long Que
Article

Abstract

Real-time tagless monitoring of cell viability using patch-clamp microchips is reported and validated by using fluorescence imaging techniques for the first time. Specifically, four human breast cancer cell lines (MDA-MB231, MDA-MB231-brain metastatic subline (abbreviated as MB231-BR), MB231-BR over-expressing HER2 gene (MB231-BR-HER2), and MB231-BR-vector control for the HER2 (MB231-BR-vector)) have been used for these studies. Systematic experiments on these cells found that the seal impedance/resistance of cells captured by the micro-pipettes always decreases during the process when the cell loses its viability, and therefore it is a valid indicator of live or dead cells. Systematic experiments also found that the Mega-seal of patch-clamp microchip is sufficient for monitoring cell viability. Given its simplicity of direct electrical measurement of cells without fluorescence labeling, this technology may provide an efficient technical platform to monitor the drug effects on cells, thereby significantly benefiting high throughput drug screening and discovery process.

Keywords

Cell viability Patch clamp microchip High throughput Direct electrical measurement 

References

  1. F. Denizot, R. Lang, J. Immunol. Meth. 89(2), 271 (1986)CrossRefGoogle Scholar
  2. Z. Gong, F. Nie, T. Zhang, H. Zhao, S. Wong, L. Que, Proc. IEEE MEMS, 1015 (2010)Google Scholar
  3. Z. Gong, H. Zhao, T. Zhang, F. Nie, P. Pathak, K. Cui, Z. Wang, S. Wong, L. Que, Biomed. Microdev. 13(1), 215 (2011)CrossRefGoogle Scholar
  4. D. Haussinger, J. Biochem. 313, 697 (1996)Google Scholar
  5. S.Z. Hua, T. Pennell, Lab Chip 9, 251 (2009)CrossRefGoogle Scholar
  6. C. Ionescu-Zanetti, R.M. Shaw, J. Seo, Y.N. Jan, L.Y. Jan, L.P. Lee, PNAS 102(26), 9112 (2005)CrossRefGoogle Scholar
  7. L. Kang, B. Chung, R. Langer, A. Khademhosseini, Drug Discov. Today 13, 1 (2008)CrossRefGoogle Scholar
  8. X. Li, Ph.D. thesis (Yale University, 2006)Google Scholar
  9. B. Matthews, J.W. Judy, IEEE J. Microelectromech. Syst. 15(1), 214 (2006)CrossRefGoogle Scholar
  10. J.M. Nagarah, E. Paek, Y. Luo, P. Wang, G.S. Hwang, J.R. Heath, Adv. Mater. 22(41), 4622 (2010)CrossRefGoogle Scholar
  11. D. Palmieri, Q.R. Smith, P.R. Lockman, J. Bronder, B. Gril, A.F. Chambers, R.J. Weil, P.S. Steeg, Breast Dis. 26, 139 (2006)Google Scholar
  12. S. Penmetsa, K. Nagrajan, Z. Gong, D. Mills, L. Que, Appl. Phys. Lett. 97, 263702 (2010)CrossRefGoogle Scholar
  13. B. Sakmann, E. Neher, Single channel recording (Plenum, New York, 1983)Google Scholar
  14. T. Yoneda, P.J. Williams, T. Hiraga, M. Niewolna, R. Nishimura, J. Bone Miner. Res. 16, 1486 (2001)CrossRefGoogle Scholar
  15. W. Zheng, R.H. Spencer, L. Kiss, Assay Drug Dev. Technol. 2(5), 543 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pushparaj Pathak
    • 1
  • Hong Zhao
    • 2
  • Zhongcheng Gong
    • 1
  • Fang Nie
    • 2
  • Tianhua Zhang
    • 1
  • Kemi Cui
    • 2
  • Zhiyong Wang
    • 2
  • Stephen T. C. Wong
    • 2
  • Long Que
    • 1
  1. 1.Institution for MicromanufacturingLouisiana Tech UniversityRustonUSA
  2. 2.Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute and Departments of Radiology, Neurosciences, Pathology and Laboratory Medicine, The Methodist HospitalWeill Cornell Medical CollegeHoustonUSA

Personalised recommendations