Biomedical Microdevices

, Volume 13, Issue 4, pp 779–788 | Cite as

Particle manipulation in a microfluidic channel using acoustic trap

  • Jong Seob Jeong
  • Jung Woo Lee
  • Chang Yang Lee
  • Shia Yen Teh
  • Abraham Lee
  • K. Kirk Shung
Article

Abstract

A high frequency sound beam was employed to explore an experimental method that could control particle motions in a microfluidic device. A 24 MHz single element lead zirconate titanate (PZT) transducer was built to transmit a focused ultrasound of variable duty factors (pulse duration/pulse repetition time), and its 1–3 piezocomposite structure established a tight focusing with f-number (focal depth/aperture size) of one. The transducer was excited by the Chebyshev windowed chirp signal sweeping from 18 MHz to 30 MHz with a 50% of duty factor, in order to ensure that enough sound beams were penetrated into the microfluidic device. The device was fabricated from a polydimethylsiloxane (PDMS) mold, and had a main channel composed of three subchannels among which particles flowed in the middle. A 60~70 μm diameter single droplet in the flow could be trapped near the channel bifurcation, and subsequently diverted into the sheath flow by releasing or shifting the acoustic trap. Hence, the results showed the potential use of a focused sound beam in microfluidic devices, and further suggested that this method could be exploited in the development of ultrasound-based flow cytometry and cell sorting devices.

Keywords

Particle manipulation Acoustic trap High frequency transducer Microfluidic device 

Supplementary material

ESM 1

(WMV 760 kb)

ESM 2

(WMV 729 kb)

References

  1. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)CrossRefGoogle Scholar
  2. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74, 2637 (2002)Google Scholar
  3. W.T. Coakley, Trends Biotechnol. 15, 506 (1997)CrossRefGoogle Scholar
  4. M.D.L. de Castro, F. Priego-Capote, TrAC, Trends Anal. Chem. 26, 154 (2007)CrossRefGoogle Scholar
  5. T.N. Erpelding, K.W. Hollmana, M. O’Donnell, Ultrasound Med. Biol. 33, 263 (2007)CrossRefGoogle Scholar
  6. L.P. Ghislain, N.A. Switz, W.W. Webb, Rev. Sci. Instrum. 65, 2762 (1994)CrossRefGoogle Scholar
  7. D.G. Grier, Nature 424, 810 (2003)CrossRefGoogle Scholar
  8. T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, Y.J. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control SU-32, 481 (1985)Google Scholar
  9. H.M. Hertz, J. Appl. Phys. 78, 4845 (1995)CrossRefGoogle Scholar
  10. S.M. Howard, C.I. Zanelli, 6th international symposium on therapeutic ultrasound. AIP Conf. Proc. 911, 8 (2007)CrossRefGoogle Scholar
  11. M.P. Hughes, Electrophoresis 23, 2569 (2002)CrossRefGoogle Scholar
  12. A. Hurrell, J. Phys. Conf. Ser. 1, 57 (2004)CrossRefGoogle Scholar
  13. M. Kozlov, M. Quarmyne, W. Chen, T.J. McCarthy, Macromolecules 36, 6054 (2003)CrossRefGoogle Scholar
  14. T. Laurell, F. Petersson, A. Nilsson, Chem. Soc. Rev. 36, 492 (2007)CrossRefGoogle Scholar
  15. H. Lee, A. Purdon, R.M. Westervelt, Appl. Phys. Lett. 85, 1063 (2004)CrossRefGoogle Scholar
  16. J.W. Lee, K. Ha, K.K. Shung, J. Acoust. Soc. Am. 117, 3273 (2005)CrossRefGoogle Scholar
  17. J.W. Lee, S.Y. Teh, A. Lee, H.H. Kim, C.Y. Lee, K.K. Shung, Ultrasound Med. Biol. 36, 350 (2010a)CrossRefGoogle Scholar
  18. J.W. Lee, C.Y. Lee, K.K. Shung, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2305 (2010b)CrossRefGoogle Scholar
  19. Y. Liu, J. Hu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 798 (2009)CrossRefGoogle Scholar
  20. M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421 (2003)CrossRefGoogle Scholar
  21. R.E. Newnham, D.P. Skinner, L.E. Cross, Mater. Res. Bull. 13, 525 (1978)CrossRefGoogle Scholar
  22. M. O’Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 341 (1992)CrossRefGoogle Scholar
  23. H.A. Pohl, J. Appl. Phys. 22, 869 (1951)CrossRefGoogle Scholar
  24. D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Anal. Chem. 74, 2623 (2002)Google Scholar
  25. Z.M. Saiyed, S.D. Telang, C.N. Ramch, Biomagn. Res. Technol. 1 (2003)Google Scholar
  26. J. Shi, D. Ahmed, X. Mao, S.S. Lin, A. Lawit, T.J. Huang, Lab Chip 9, 2890 (2009)CrossRefGoogle Scholar
  27. K. Svoboda, S.M. Block, Opt. Lett. 19, 930 (1994)CrossRefGoogle Scholar
  28. J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006)CrossRefGoogle Scholar
  29. M. Washizu, J. Electrostat. 25, 109 (1990)CrossRefGoogle Scholar
  30. V. Wilkens, C. Koch, J. Phys. Conf. Ser. 1, 50 (2004)CrossRefGoogle Scholar
  31. S. Woodside, S. Bowen, J. Piret, AIChE J. 43, 1727 (1997)CrossRefGoogle Scholar
  32. J. Wu, G. Du, Acoust. Soc. Am. 87, 997 (1990)CrossRefGoogle Scholar
  33. Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998)CrossRefGoogle Scholar
  34. J. Yan, D. Skoko, J.F. Marko, Phys. Rev. E. 70, 011905 (2004)CrossRefGoogle Scholar
  35. S. Zhang, R. Xia, L. Lebrun, D. Anderson, T.R. Shrout, Mater. Lett. 59, 3471 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jong Seob Jeong
    • 1
  • Jung Woo Lee
    • 2
  • Chang Yang Lee
    • 2
  • Shia Yen Teh
    • 3
  • Abraham Lee
    • 3
  • K. Kirk Shung
    • 2
  1. 1.Department of Medical Biotechnology, College of Life Science and BiotechnologyDongguk University-SeoulSeoulRepublic of Korea
  2. 2.Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of Biomedical EngineeringUniversity of California at IrvineIrvineUSA

Personalised recommendations