Biomedical Microdevices

, Volume 13, Issue 4, pp 753–758 | Cite as

Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells

  • Shin-Yi Cindy Chen
  • Paul J. Hung
  • Philip J. Lee


The ability to culture cells in three dimensional extracellular matrix (3D ECM) has proven to be an important tool for laboratory biology. Here, we demonstrate a microfluidic perfusion array on a 96-well plate format capable of long term 3D ECM culture within biomimetic microchambers. The array consists of 32 independent flow units, each with a 4 μl open-top culture chamber, and 350 μl inlet and outlet wells. Perfusion is generated using gravity and surface tension forces, allowing the array to be operated without any external pumps. MCF-10A mammary epithelial cells cultured in Matrigel in the microfluidic array exhibit acinus morphology over 9 days consistent with previous literature. We further demonstrated the application of the microfluidic array for in vitro anti-cancer drug screening.


Microfluidics 3D cell culture Mammary epithelial cells MCF-10A 

Supplementary material

10544_2011_9545_MOESM1_ESM.pdf (102 kb)
Supplementary Figure 1 Culture configurations in the microfluidic 3D ECM array. MCF-10A cells cultured for 4 days in the microfluidic chamber with live/dead staining in 2D, 3D overlayed and 3D embedded. (PDF 102 kb)


  1. M.J. Bissell, M.H. Barcellos-Hoff, J. Cell Sci. Suppl. 8, 327–343 (1987)Google Scholar
  2. R. Chignola, A. Schenetti, G. Andrighetto, E. Chiesa, R. Foroni, S. Sartoris, G. Tridente, D. Liberati, Cell Prolif. 33, 219–229 (2000)CrossRefGoogle Scholar
  3. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Science 294, 1708–1712 (2001)CrossRefGoogle Scholar
  4. L. David, V. Dulong, D. Le Cerf, L. Cazin, M. Lamacz, J.P. Vannier, Acta Biomater. 4, 256–263 (2008)CrossRefGoogle Scholar
  5. J. Debnath, K.R. Mills, N.L. Collins, M.J. Reginato, S.K. Muthuswamy, J.S. Brugge, Cell 111, 29–40 (2002)CrossRefGoogle Scholar
  6. J. Debnath, S.K. Muthuswamy, J.S. Brugge, Methods 30, 256–268 (2003)CrossRefGoogle Scholar
  7. J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  8. C. Feder-Mengus, S. Ghosh, A. Reschner, I. Martin, G.C. Spagnoli, Trends Mol. Med. 14, 333–340 (2008)CrossRefGoogle Scholar
  9. L.A. Gurski, A.K. Jha, C. Zhang, X. Jia, M.C. Farach-Carson, Biomaterials 30, 6076–6085 (2009)CrossRefGoogle Scholar
  10. J.L. Horning, S.K. Sahoo, S. Vijayaraghavalu, S. Dimitrijevic, J.K. Vasir, T.K. Jain, A.K. Panda, V. Labhasetwar, Mol. Pharm. 5, 849–862 (2008)CrossRefGoogle Scholar
  11. P.A. Kenny, G.Y. Lee, C.A. Myers, R.M. Neve, J.R. Semeiks, P.T. Spellman, K. Lorenz, E.H. Lee, M.H. Barcellos-Hoff, O.W. Petersen, Mol. Oncol. 1, 84–96 (2007)CrossRefGoogle Scholar
  12. H.K. Kleinman, G.R. Martin, Semin. Cancer Biol. 15, 378–386 (2005)CrossRefGoogle Scholar
  13. P.J. Lee, P.J. Hung, V.M. Rao, L.P. Lee, Biotechnol. Bioeng. 94, 5–14 (2006)CrossRefGoogle Scholar
  14. G.Y. Lee, P.A. Kenny, E.H. Lee, M.J. Bissell, Nat. Methods 4, 359–365 (2007a)CrossRefGoogle Scholar
  15. P.J. Lee, T.A. Gaige, N. Ghorashian, P.J. Hung, Biotechnol. Prog. 23, 946–951 (2007b)Google Scholar
  16. P.J. Lee, N. Ghorashian, T.A. Gaige, P.J. Hung, JALA Charlottesv Va. 12, 363–367 (2007c)Google Scholar
  17. C. Plachot, L.S. Chaboub, H.A. Adissu, L. Wang, A. Urazaev, J. Sturgis, E.K. Asem, S.A. Lelievre, BMC Biol. 7, 77 (2009)CrossRefGoogle Scholar
  18. V. Vickerman, J. Blundo, S. Chung, R. Kamm, Lab Chip 8, 1468–1477 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shin-Yi Cindy Chen
    • 1
  • Paul J. Hung
    • 1
  • Philip J. Lee
    • 1
  1. 1.CellASIC CorporationHaywardUSA

Personalised recommendations