Biomedical Microdevices

, Volume 13, Issue 4, pp 671–682 | Cite as

Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore

  • Bala Murali Venkatesan
  • James Polans
  • Jeffrey Comer
  • Supriya Sridhar
  • David Wendell
  • Aleksei Aksimentiev
  • Rashid Bashir
Article

Abstract

Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical detection and analysis of single molecules, applicable to next generation DNA sequencing. The versatility of this technology allows for both large scale device integration and interfacing with biological systems. Here we report on the development of a hybrid biological solid-state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state Al2O3 nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. Such a system seeks to combine the superior electrical, thermal, and mechanical stability of Al2O3 solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on Al2O3 exhibit higher diffusivity than those formed on TiO2 and SiO2 substrates, attributed to the presence of a thick hydration layer on Al2O3, a key requirement to preserving the biological functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively charged Al2O3 surface may be responsible for the enhanced thickness of this hydration layer. Lipid bilayer coated Al2O3 nanopore sensors exhibit excellent electrical properties and enhanced mechanical stability (GΩ seals for over 50 h), making this technology ideal for use in ion channel electrophysiology, the screening of ion channel active drugs and future integration with biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. This technology can find broad application in bio-nanotechnology.

Keywords

Nanopore Al2O3 Lipid bilayer Hybrid biological solid-state Nanopore 

Notes

Acknowledgements

We thank Dr. Scott MacLaren for AFM assistance and Dr. Rick Haasch for assistance with XPS at the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois. We also thank the staff at Micro and Nanotechnology Lab, University of Illinois for assistance in device fabrication. We acknowledge the funding from the National Institutes of Health through the NIH Roadmap for Medical Research Nanomedicine Development Center (PN2 EY 018230) and NIH R21 EB007472. A.A. and J.C. acknowledge support from the National Institutes of Health (R01-HG005115 and P41-RR05969), the National Science Foundation (PHY-0822613 and DMR-0955959), and the Petroleum Research Fund (48352-G6). The supercomputer time was provided via TRAC grant MCA05S028.

Supplementary material

10544_2011_9537_MOESM1_ESM.docx (674 kb)
ESM 1(DOCX 673 kb)
10544_2011_9537_MOESM2_ESM.mpg (6.3 mb)
ESM 2(MPG 6483 kb)
10544_2011_9537_MOESM3_ESM.mpg (9.5 mb)
ESM 3(MPG 9695 kb)
10544_2011_9537_MOESM4_ESM.mpg (10.5 mb)
ESM 4(MPG 10711 kb)

References

  1. S.P. Adiga, P. Zapol, L.A. Curtiss, J. Phys. Chem. C 111(20), 7422–7429 (2007)CrossRefGoogle Scholar
  2. A. Aksimentiev, Nanoscale 2(4), 468–483 (2010)CrossRefGoogle Scholar
  3. H.C. Andersen, J. Comput. Phys. 52(1), 24–34 (1983)MATHCrossRefGoogle Scholar
  4. D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, W.W. Webb, Biophys. J. 16(9), 1055–1069 (1976)CrossRefGoogle Scholar
  5. P.F. Batcho, D.A. Case, T. Schlick, J. Chem. Phys. 115(9), 4003–4018 (2001)CrossRefGoogle Scholar
  6. A. Berquand, P.E. Mazeran, J. Pantigny, V. Proux-Delrouyre, J.M. Laval, C. Bourdillon, Langmuir 19(5), 1700–1707 (2003)CrossRefGoogle Scholar
  7. T. Cassier, A. Sinner, A. Offenhauser, H. Mohwald, Colloids Surf. B 15(3–4), 215–225 (1999)CrossRefGoogle Scholar
  8. E. Castellana, P. Cremer, Surf. Sci. Rep. 61(10), 429–444 (2006)CrossRefGoogle Scholar
  9. T. Cha, A. Guo, X.Y. Zhu, Biophys. J. 90(4), 1270–1274 (2006)CrossRefGoogle Scholar
  10. H. Chang, B. Venkatesan, S. Iqbal, G. Andreadakis, F. Kosari, G. Vasmatzis, D. Peroulis, R. Bashir, Biomed. Microdevices 8(3), 263–269 (2006)CrossRefGoogle Scholar
  11. J. Clarke, H.C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Nat. Nanotechnol. 4(4), 265–270 (2009)CrossRefGoogle Scholar
  12. P.S. Cremer, S.G. Boxer, J. Phys. Chem. B 103(13), 2554–2559 (1999)CrossRefGoogle Scholar
  13. E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, J. Phys. Chem. B 110(43), 21497–21508 (2006)CrossRefGoogle Scholar
  14. G. Csucs, J.J. Ramsden, Biochim. Et Biophys. Acta Biomembr. 1369(1), 61–70 (1998)CrossRefGoogle Scholar
  15. I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach, Proc. Natl Acad. Sci. 107(37), 16060–16065 (2010)CrossRefGoogle Scholar
  16. J. Drews, Science 287(5460), 1960–1964 (2000)CrossRefGoogle Scholar
  17. J. Drexler, C. Steinem, J. Phys. Chem. B 107(40), 11245–11254 (2003)CrossRefGoogle Scholar
  18. H.C. Gaede, K.M. Luckett, I.V. Polozov, K. Gawrisch, Langmuir 20(18), 7711–7719 (2004)CrossRefGoogle Scholar
  19. A. Grakoui, S.K. Bromley, C. Sumen, M.M. Davis, A.S. Shaw, P.M. Allen, M.L. Dustin, Science 285(5425), 221–227 (1999)CrossRefGoogle Scholar
  20. J.T. Groves, L.K. Mahal, C.R. Bertozzi, Langmuir 17(17), 5129–5133 (2001)CrossRefGoogle Scholar
  21. J.T. Groves, N. Ulman, S.G. Boxer, Science 275(5300), 651–653 (1997)CrossRefGoogle Scholar
  22. J.T. Groves, N. Ulman, P.S. Cremer, S.G. Boxer, Langmuir 14(12), 3347–3350 (1998)CrossRefGoogle Scholar
  23. X.J. Han, A. Studer, H. Sehr, I. Geissbuhler, M. Di Berardino, F.K. Winkler, L.X. Tiefenauer, Adv. Mater. 19(24), 4466 (2007)CrossRefGoogle Scholar
  24. J.B. Heng, A. Aksimentiev, C. Ho, P. Marks, Y.V. Grinkova, S. Sligar, K. Schulten, G. Timp, Nano Lett. 5(10), 1883–1888 (2005)CrossRefGoogle Scholar
  25. D.P. Hoogerheide, S. Garaj, J.A. Golovchenko, Phys. Rev. Lett. 102(25), 256804 (2009)CrossRefGoogle Scholar
  26. S.J. Johnson, T.M. Bayerl, D.C. McDermott, G.W. Adam, A.R. Rennie, R.K. Thomas, E. Sackmann, Biophys. J. 59(2), 289–294 (1991)CrossRefGoogle Scholar
  27. H.G. Kapitza, G. Mcgregor, K.A. Jacobson, Proc. Natl Acad. Sci. U.S.A. 82(12), 4122–4126 (1985)CrossRefGoogle Scholar
  28. C. Kataoka-Hamai, H. Inoue, Y. Miyahara, Langmuir 24(17), 9916–9920 (2008)CrossRefGoogle Scholar
  29. B.W. Koenig, S. Krueger, W.J. Orts, C.F. Majkrzak, N.F. Berk, J.V. Silverton, K. Gawrisch, Langmuir 12(5), 1343–1350 (1996)CrossRefGoogle Scholar
  30. S. Kumar, J.H. Hoh, Langmuir 16(25), 9936–9940 (2000)CrossRefGoogle Scholar
  31. Z.V. Leonenko, D. Merkle, S.P. Lees-Miller, D.T. Cramb, Langmuir 18(12), 4873–4884 (2002)CrossRefGoogle Scholar
  32. J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, Nat. Mater. 2(9), 611–615 (2003)CrossRefGoogle Scholar
  33. A.D. MacKerell, A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102(18), 3586–3616 (1998)CrossRefGoogle Scholar
  34. M.D. Mager, B. Almquist, N.A. Melosh, Langmuir 24(22), 12734–12737 (2008)CrossRefGoogle Scholar
  35. M.D. Mager, N.A. Melosh, Adv. Mater. 20(23), 4423–4427 (2008)CrossRefGoogle Scholar
  36. G.J. Martyna, D.J. Tobias, M.L. Klein, J. Chem. Phys. 101(5), 4177–4189 (1994)CrossRefGoogle Scholar
  37. B. McNally, M. Wanunu and A. Meller, Nano Lett. (2008)Google Scholar
  38. S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13(8), 952–962 (1992)CrossRefGoogle Scholar
  39. P. Nollert, H. Kiefer, F. Jahnig, Biophys. J. 69(4), 1447–1455 (1995)CrossRefGoogle Scholar
  40. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  41. J. Raedler, H. Strey, E. Sackmann, Langmuir 11(11), 4539–4548 (1995)CrossRefGoogle Scholar
  42. E. Reimhult, F. Hook, B. Kasemo, J. Chem. Phys. 117(16), 7401–7404 (2002)CrossRefGoogle Scholar
  43. E. Reimhult, F. Hook, B. Kasemo, Langmuir 19(5), 1681–1691 (2003)CrossRefGoogle Scholar
  44. R. Richter, A. Mukhopadhyay, A. Brisson, Biophys. J. 85(5), 3035–3047 (2003)CrossRefGoogle Scholar
  45. W. Romer, C. Steinem, Biophys. J. 86(2), 955–965 (2004)CrossRefGoogle Scholar
  46. R.F. Roskamp, I.K. Vockenroth, N. Eisenmenger, J. Braunagel, I. Koper, Chemphyschem 9(13), 1920–1924 (2008)CrossRefGoogle Scholar
  47. E. Sackmann, Science 271(5245), 43–48 (1996)CrossRefGoogle Scholar
  48. J. Shi, T. Yang, S. Kataoka, Y. Zhang, A.J. Diaz, P.S. Cremer, J. Am. Chem. Soc. 129(18), 5954–5961 (2007)CrossRefGoogle Scholar
  49. S.W.I. Siu, R. Vacha, P. Jungwirth, R.A. Bockmann, J. Chem. Phys. 128(12), 125103–12 (2008)CrossRefGoogle Scholar
  50. R.M.M. Smeets, N.H. Dekker, C. Dekker, Nanotechnology 20(9), 095501 (2009)CrossRefGoogle Scholar
  51. R.M.M. Smeets, S.W. Kowalczyk, A.R. Hall, N.H. Dekker and C. Dekker, Nano Lett. (2008)Google Scholar
  52. J.M. Solletti, M. Botreau, F. Sommer, W.L. Brunat, S. Kasas, T.M. Duc, M.R. Celio, Langmuir 12(22), 5379–5386 (1996)CrossRefGoogle Scholar
  53. T.E. Starr, N.L. Thompson, Langmuir 16(26), 10301–10308 (2000)CrossRefGoogle Scholar
  54. M. Stelzle, G. Weissmuller, E. Sackmann, J. Phys. Chem. 97(12), 2974–2981 (1993)CrossRefGoogle Scholar
  55. A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.-F. Joanny, C. Dekker, Nano Lett. 5(7), 1193–1197 (2005)CrossRefGoogle Scholar
  56. B.M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, R. Bashir, Adv. Mater. 21(27), 2771–2776 (2009)CrossRefGoogle Scholar
  57. B.M. Venkatesan, A.B. Shah, J.M. Zuo, R. Bashir, Adv. Funct. Mater. 20(8), 1266–1275 (2010)CrossRefGoogle Scholar
  58. R.J. White, B. Zhang, S. Daniel, J.M. Tang, E.N. Ervin, P.S. Cremer, H.S. White, Langmuir 22(25), 10777–10783 (2006)CrossRefGoogle Scholar
  59. Q. Zhao, J. Comer, V. Dimitrov, S. Yemenicioglu, A. Aksimentiev, G. Timp, Nucleic Acids Res. 36(5), 1532–1541 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bala Murali Venkatesan
    • 1
    • 2
  • James Polans
    • 1
    • 2
  • Jeffrey Comer
    • 3
    • 4
  • Supriya Sridhar
    • 1
    • 2
  • David Wendell
    • 6
    • 7
  • Aleksei Aksimentiev
    • 3
    • 4
  • Rashid Bashir
    • 1
    • 2
    • 3
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana ChampaignIllinoisUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana ChampaignIllinoisUSA
  3. 3.Department of PhysicsUniversity of Illinois at Urbana ChampaignIllinoisUSA
  4. 4.Beckman InstituteUniversity of Illinois at Urbana ChampaignIllinoisUSA
  5. 5.Department of BioengineeringUniversity of Illinois at Urbana ChampaignIllinoisUSA
  6. 6.College of MedicineUniversity of CincinnatiCincinnatiUSA
  7. 7.College of EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations