Biomedical Microdevices

, Volume 13, Issue 2, pp 279–289 | Cite as

Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels

  • Liju Yang
  • Adilah Guiseppi-Wilson
  • Anthony Guiseppi-ElieEmail author


Microlithographically fabricated interdigitated microsensor electrodes (IMEs) were cleaned, surface activated, chemically functionalized (amine) and derivatized with an Acrloyl-PEG-NHS to receive a spun-applied monomer cocktail of UV polymerizable monomer. IMEs were 2050.5, 1550.5, 1050.5 and 0550.5 possessing lines and spaces that were 20, 15, 10, and 5 μm respectively; 5 mm line lengths and were 50 lines on each opposing bus. Bioactive hydrogels were synthesized from spun-applied and UV-crosslinked tetraethyleneglycol diacrylate (TEGDA) (crosslinker), 2-hydroxyethylmethacrylate (HEMA), polyethyleneglycol(200) monomethacrylate (PEGMA), N-[tris(hydroxymethyl)methyl]-acrylamide (HMMA) and poly(HEMA) (MW 60,000) (viscosity modifier) and 2,2-dimethoxy-2-phenylacetophenone (DMPA) (photoinitiator) to produce a 5 μm thick p(HEMA-co-PEGMA-co-HMMA) hydrogel membrane on the IMEs. Unmodified and hydrogel coated IMEs where characterized by AC electrical impedance spectroscopy using 50 mV p-t-p over the frequency range from 10 Hz to 100 kHz in aqueous PBS 7.4 buffer and in buffer containing 50 mM [Fe(CN)6]3-/4 solution at RT. Impedimetric responses were found to scale with the device geometric parameters. Equivalent circuit modeling revealed deviations from ideality at lower device dimensions suggesting an implication of the substrate surface charge on the double layer capacitance of the electrodes. Diffusion coefficients derived from the Warburg component are in accord with literature values.


Microfabrication IME Arrays Hydrogels Impedance Biosensors 



L. Yang acknowledges support from NC BIOIMPACT initiative and the Gold Leaf foundation. A Guiseppi-Wilson acknowledges the support of ABTECH Scientific, Inc. and A. Guiseppi-Elie acknowledges support from the US Department of Defense (DoDPRMRP) grant PR023081/DAMD17-03-1-0172 and the Consortium of the Clemson University Center for Bioelectronics, Biosensors and Biochips (C3B).


  1. M.Y. Arica, G. Bayramoglu, Polyethyleneimine-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization. Biochem. Eng. J. 20(1), 73–77 (2004a)CrossRefGoogle Scholar
  2. M.Y. Arica, G. Bayramoglu, Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chleated poly(HEMA-co-GMA) reactive membranes. J. Mol. Catal. B Enzym. 27(4–6), 255–265 (2004b)CrossRefGoogle Scholar
  3. S.H. Behrens, D.G. Grier, The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716 (2001)CrossRefGoogle Scholar
  4. T. Blythe, D. Bloor, Electrical properties of polymers (Cambridge University Press, London, 2005)Google Scholar
  5. A. Boztas, A. Guiseppi-Elie, Immobilization and release of the redox mediator ferrocene monocarboxylic acid from within cross-linked p(HEMA-co-PEGMA-co-HMMA) hydrogels. Biomacromolecules 10(8), 2135–2143 (2009)CrossRefGoogle Scholar
  6. S. Brahim, A.M. Wilson et al., Chemical and biological sensors based on impedimetric detection using conductive polymers. Microchim. Acta 143, 123–137 (2003)CrossRefGoogle Scholar
  7. L. Doretti, P. Gattolin et al., Amperometric choline sensor with enzyme immobilized by gamma-irradiation in a biocompatible membrane. Anal. Lett. 27(13), 2455–2470 (1994)Google Scholar
  8. L. Doretti, P. Gattolin et al., Covalently immobilized choline oxidase and cholinesterases on a methacrylate copolymer for disposable membrane biosensors. Appl. Biochem. Biotechnol. 74(1), 1–12 (1998)CrossRefGoogle Scholar
  9. R. Ehret, W. Baumann et al., Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosens. Bioelectrons. 12(1), 29–41 (1997)CrossRefGoogle Scholar
  10. R. Ehret, W. Baumann et al., On-line control of cellular adhesion with impedance measurements using interdigitated electrode structure. Med. Biol. Eng. Comput. 36, 365–370 (1998)CrossRefGoogle Scholar
  11. Y.A. Gao, N. Li et al., A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H2O microemulsions and their performance characterization by UV-Vis spectroscopy. Green Chem 8, 43–49 (2006)CrossRefGoogle Scholar
  12. K. Gawel, D. Barriet et al., Responsive hydrogels for label-free signal transduction within biosensors. Sensors 10(5), 4381–4409 (2010)CrossRefGoogle Scholar
  13. A. Guiseppi-Elie, Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31(10), 2701–2716 (2010a)CrossRefGoogle Scholar
  14. A. Guiseppi-Elie, An implantable biochip to influence patient outcomes following trauma-induced hemorrhage. Anal Bioanal Chem (2010b). doi: 10.1007/s00216-010-4271-x Google Scholar
  15. T.C. Hang, A. Guiseppi-Elie, Frequency dependent and surface characterization of DNA immobilization and hybridization. Biosens. Bioelectron. 19, 1537–1548 (2004)CrossRefGoogle Scholar
  16. Y. Huang, B. Rubinsky, Microfabricated electroporation chip for single cell membrane permeabilization. Sens. Actuators, A 89(3), 242–249 (2001)CrossRefGoogle Scholar
  17. C. Jimenez, J. Bartrol et al., Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction. Anal. Chim. Acta 351(1–3), 169–176 (1997)CrossRefGoogle Scholar
  18. G. Justin, A.R. Abdur Rahman et al., Bioactive hydrogel layers on microdisc electrode arrays: cyclic voltammetry experiments and simulations. Electroanalysis 21(10), 1125–1134 (2009a)CrossRefGoogle Scholar
  19. G. Justin, S. Finley et al., Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 103–115 (2009b)CrossRefGoogle Scholar
  20. S.J. Kim, S.J. Park et al., Electroactive characteristics of interpenetrating polymer network hydrogels composed of Poly(vinyl alcohol) and Poly(N-isopropylacrylamide). J. Appl. Polym. Sci. 89, 890–894 (2003)CrossRefGoogle Scholar
  21. D.-N. Kim, W. Lee et al., Micropatterning of proteins on the surface of three-dimensional poly(ethylene glycol) hydrogel microstructures. Anal. Chim. Acta 609(1), 59–65 (2008)CrossRefGoogle Scholar
  22. S.J. Konopka, B. McDuffie, Diffusion coefficients of ferricyanide and ferrocyanide ions in aqueous media using twin electrode thin layer electrochemistry. Anal. Chem. 42(14), 1741–1746 (1970)CrossRefGoogle Scholar
  23. A. Kyritsis, P. Pissis et al., Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci., B: Polym. Phys. 33(12), 1737–1750 (1995)CrossRefGoogle Scholar
  24. W. Laureyn, F. Frederix, et al. Nanoscaled interdigititated gold electrodes for impedimetric immunosensing. Transducer’99. Sendai, Japan, Digest of Technical Papers, pp 1884–1185 (1999a)Google Scholar
  25. W. Laureyn, D. Nelis, et al. Nanoscaled interdigititated titanium electrode for impedimetric biosensing. Eurosensors XIII. Hague, The Netherland. Proceeding for the 13th European Conference on Solid-State Transducers. (1999b).Google Scholar
  26. L. Li, D.R. Walt, Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal. Chem. 67(20), 3746–3752 (1995)CrossRefGoogle Scholar
  27. H. Li, D.Q. Wang et al., Synthesis of a novel gelatin–carbon nanotubes hybrid hydrogel. Colloids Surf., B 33(2), 85–88 (2004)CrossRefGoogle Scholar
  28. C.C. Lin, A.T. Metters, Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv. Drug Deliv. Rev. 58(12–13), 1379–1408 (2006)CrossRefGoogle Scholar
  29. P. Linderholm, J. Vannod et al., Bipolar resistivity profiling of 3D tissue culture. Biosens. Bioelectron. 22, 789–796 (2007)CrossRefGoogle Scholar
  30. Y. Luo, K.R. Kirker et al., Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control. Release 69(1), 169–184 (2000)CrossRefGoogle Scholar
  31. V.F. Lvovich, C.C. Liu et al., Optimization and fabrication of planar interdigitated impedance sensors for highly resistive non-aqueous industrial fluids. Sens. Actuators, B 119(2), 490–496 (2006)CrossRefGoogle Scholar
  32. E. Mack, T. Okano et al., Hydrogels in medicine and pharmacy. Polymers vol II (CRC Press, Boca Raton, 1988)Google Scholar
  33. A.V. Manishev, Y. Du et al., Evaluation of diffusion driven material property profiles using three wavelength interdigital sensor. IEEE Trans. Dielectr. Electr. Insul. 8(5), 785–798 (2001)CrossRefGoogle Scholar
  34. A.T. Metters, K.S. Anseth et al., Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer 41(11), 3993–4004 (2000)CrossRefGoogle Scholar
  35. W. Olthuis, W. Streekstra et al., Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators, B 24(1–3), 252–256 (1995)CrossRefGoogle Scholar
  36. R.M. Ottenbrite, K. Park et al. (eds.), Biomedical applications of hydrogels handbook (New York, Springer, 2010)Google Scholar
  37. N. Pekel, B. Salih et al., Enhancement of stability of glucose oxidase by immobilization onto metal ion-chelated poly (N-vinyl imidazole) hydrogels. J. Biomater. Sci. Polym. Ed. 16(2), 253–266 (2005)CrossRefGoogle Scholar
  38. M. Pellissier, D. Zigah et al., Optimized preparation and scanning electrochemical microscopy analysis in feedback mode of glucose oxidase layers grafted onto conducting carbon surfaces. Langmuir 24(16), 9089–9095 (2008)CrossRefGoogle Scholar
  39. N.A. Peppas, J.J. Sahlin, Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(16), 1553–1561 (1996)CrossRefGoogle Scholar
  40. R. Pethig, Dielectric properties of biological materials: biophysical and medical applications. IEEE Trans. Electr. Insul. EI-19(5), 453–474 (1984)CrossRefGoogle Scholar
  41. M.V. Pishko, A. Revzin et al., Mass transfer in amperometric biosensors based on nanocomposite thin films of redox polymers and oxidoreductases. Sensors 2(3), 79–90 (2002)CrossRefGoogle Scholar
  42. A.R.A. Rahman, A. Guiseppi-Elie, Design considerations in the development and application of Microdisc Electrode Arrays (MDEAs) for implantable biosensors. Biomed. Microdevices 11, 701–710 (2009)CrossRefGoogle Scholar
  43. A.R.A. Rahman, D.T. Price et al., Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sens. Actuators, B 127, 89–96 (2007)CrossRefGoogle Scholar
  44. A.R.A. Rahman, G. Justin et al., Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2009)CrossRefGoogle Scholar
  45. B. Roffel, J.J. van de Graaf, The diffusion coefficient of ferricyanide ions in aqueous potassium chloride solutions with and without polyethylene oxide addition. J. Chem. Eng. Data 22(3), 301–302 (1977)CrossRefGoogle Scholar
  46. A.Y. Rubina, S.V. Pan’kov et al., Hydrogel drop microchips with immobilized DNA: properties and methods for large-scale production. Anal. Biochem. 325(1), 92–106 (2004)CrossRefGoogle Scholar
  47. B. Schulz, A. Riedel et al., Influence of polymerization parameters and entrapment in poly(hydroxyethyl methacrylate) on activity and stability of GOD. J. Mol. Catal. B Enzym. 7(1–4), 85–91 (1999)CrossRefGoogle Scholar
  48. S. Sengupta, D.A. Battigelli et al., A micro-scale multi-frequency reactance measurement technique to detect bacterial growth at low bio-particle concentrations. Lab Chip 6, 1–11 (2006)CrossRefGoogle Scholar
  49. N.F. Sheppard Jr., R.C. Tucker et al., Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal. Chem. 65(9), 1199–1202 (1993)CrossRefGoogle Scholar
  50. N.F. Sheppard Jr., M.J. Lesho et al., Microfabricated conductimetric pH sensor. Sens. Actuators, B 28(2), 95–102 (1995)CrossRefGoogle Scholar
  51. N.F. Sheppard Jr., D.J. Mears et al., Model of a conductimetric urea biosensor. Biosens. Bioelectron. 11(10), 967–979 (1996)CrossRefGoogle Scholar
  52. C. Soto, C. Patterson et al., Immobilization and hybridization of DNA in a sugar polyacrylate hydrogel. Biotechnol. Bioeng. 92(7), 934–942 (2005)CrossRefGoogle Scholar
  53. M.M. Sung, G.J. Kluth et al., Formation of alkylsiloxane self-assembled monolayers on Si3N4. J. Vac. Sci. Technol., A 17(2), 540–544 (1999)CrossRefGoogle Scholar
  54. R. Trigo, M. Blanco, et al., L-Ascorbic acid release from poly(2-hydroxyethyl methacrylate) hydrogels. Polym. Bull. 31, 577–584 (1993)Google Scholar
  55. Y. Wang, G. Tan et al., Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact lens materials. Appl. Surf. Sci. 255(2), 604–606 (2008)CrossRefGoogle Scholar
  56. L. Yang, A. Guiseppi-Elie, Impedimetric biosensors for nano and microfluidics, in Encyclopedia of microfluidics and nanofluidics, ed. by D. Li, vol. 2 (Springer-Verlag GmbH, Berlin Heidelberg, 2008), pp. 811–823CrossRefGoogle Scholar
  57. L. Yang, Y. Li, Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. J. Microbiol. Methods 64, 9–16 (2006)CrossRefGoogle Scholar
  58. X. Yang, G. Zhang, The voltammetric performance of interdigitated electrodes with different electron-transfer rate constants. Sens. Actuators, B 126(2), 624–631 (2007)CrossRefGoogle Scholar
  59. L. Yang, Y. Li et al., Interdigited microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 19, 1139–1147 (2004)CrossRefGoogle Scholar
  60. B. Yu, C. Wang et al., Use of hydrogel coating to improve the performance of implanted glucose sensors. Biosens. Bioelectron. 23(8), 1278–1284 (2008)CrossRefGoogle Scholar
  61. M.C. Zaretsky, L. Mouayad et al., Continuum properties from interdigital electrode dielectrometry. IEEE Trans. Elect. Insul. 23, 897–917 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Liju Yang
    • 1
  • Adilah Guiseppi-Wilson
    • 2
  • Anthony Guiseppi-Elie
    • 2
    • 3
    • 4
    Email author
  1. 1.Biomanufacturing Research Institute and Technology Enterprises (BRITE) and Department of Pharmaceutical SciencesNorth Carolina Central UniversityDurhamUSA
  2. 2.ABTECH Scientific, IncRichmondUSA
  3. 3.Center for Bioelectronics, Biosensors and Biochips (C3B)Clemson UniversityAndersonUSA
  4. 4.Departments of Chemical and Biomolecular Engineering, Bioengineering and Electrical and Computer EngineeringClemson UniversityClemsonUSA

Personalised recommendations