Biomedical Microdevices

, Volume 13, Issue 1, pp 215–219 | Cite as

Drug effects analysis on cells using a high throughput microfluidic chip

  • Zhongcheng Gong
  • Hong Zhao
  • Tianhua Zhang
  • Fang Nie
  • Pushparaj Pathak
  • Kemi Cui
  • Zhiyong Wang
  • Stephen Wong
  • Long Que
Article

Abstract

Usually cell-based assay is performed using titer plates. Because of the large library of chemical compounds, robust and rapid methods are required to find, refine and test a potential drug candidate in an efficient manner. In this article, the drug effects analysis on human breast cancer cells with a droplet microfluidic chip is reported. Each droplet serves as a nanoliter-volume titer plate and contains a human breast cancer cell MDA-MB-231, Cytochalasin D drug solution and cell viability indicator such as Calcein AM, which emits cytoplasmic green fluorescence. The drug effects on each cell are monitored in real time using a fluorescence microscope and by analyzing the fluorescence image of each cell. Clear change of the cell shape and size has been observed after the drug treatment, which is similar to that of conventional petri dish technique, suggesting this approach is a potential viable technical platform for drug effect analysis and for high throughput drug screen and discovery.

Keywords

Drug effect analysis Droplet microfluidic device High throughput Fluorescence image analysis 

References

  1. J. Atencia, D. Beebe, Nature 437, 648–655 (2005)CrossRefGoogle Scholar
  2. P. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5, 210–218 (2006)CrossRefGoogle Scholar
  3. Z. Gong, S. Penmesta, Z. Zheng, Y. Lvov, L. Que, Tech. Digest Transducers’ 09, 1043–1046 (2009)Google Scholar
  4. Z. Gong, F. Nie, T. Zhang, H. Zhao, S. Wong, L. Que, Proc. IEEE MEMS, 1015–1018 (2010)Google Scholar
  5. D. Haussinger, J. Biochem. 313, 697 (1996)Google Scholar
  6. S.Z. Hua, T. Pennell, Lab Chip 9, 251–256 (2009)CrossRefGoogle Scholar
  7. L. Kang, B. Chung, R. Langer, A. Khademhosseini, Drug Discov. Today 13, 1–13 (2008)CrossRefGoogle Scholar
  8. S. Madisetti, Z. Zheng, Z. Gong, S. Penmetsa, Y. Lvov, L. Que, Proc. IEEE NEMS, 440–443 (2009)Google Scholar
  9. F. Sachs, Nat. Struct. Biol. 9, 636–637 (2002)CrossRefMathSciNetGoogle Scholar
  10. H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336–7356 (2006)Google Scholar
  11. R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L. Chu, J. Kim, A. Fernandez-Nieves, C.J. Martinez, D.A. Weitz, Materials Today, 11, 18–27 (2008)Google Scholar
  12. Y. Tan, K. Hettiarachchi, M. Siu, Y. Pan, A. Lee, J. Am. Chem. Soc. 128, 5656–5658 (2006)CrossRefGoogle Scholar
  13. B. Zheng, J. Tice, R. Ismagilov, Adv. Mater. 16, 1365–1368 (2004a)CrossRefGoogle Scholar
  14. W. Zheng, R.H. Spencer, L. Kiss, Assay and Drug Development Technologies 2(5), 543–552 (2004b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Zhongcheng Gong
    • 1
  • Hong Zhao
    • 2
  • Tianhua Zhang
    • 1
  • Fang Nie
    • 2
  • Pushparaj Pathak
    • 1
  • Kemi Cui
    • 2
  • Zhiyong Wang
    • 2
  • Stephen Wong
    • 2
  • Long Que
    • 1
  1. 1.Institution for MicromanufacturingLouisiana Tech UniversityRustonUSA
  2. 2.The Bioinformatics and Biomedical Engineering Program, Methodist Hospital Research Institute and Departments of Radiology and PathologyWeill Cornell Medical CollegeHoustonUSA

Personalised recommendations