Biomedical Microdevices

, Volume 13, Issue 1, pp 203–213 | Cite as

3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood

  • Siyang Zheng
  • Henry K. Lin
  • Bo Lu
  • Anthony Williams
  • Ram Datar
  • Richard J. Cote
  • Yu-Chong Tai


Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.


Circulating tumor cell Microfilter Parylene 



The funding of the project was provided by NIH 1R21 CA123027-01. The authors would like to thank for all the members at Caltech micromachining group and Dr. Cote’s pathology group for their valuable assistance. The authors greatly appreciate for the help from Dr. Chris Water at Caltech Biological Imaging Center on using confocal microscopy.


  1. C. Alix-Panabieres, S. Riethdorf et al., Circulating tumor cells and bone marrow micrometastasis. Clin. Cancer Res. 14(16), 5013–5021 (2008)CrossRefGoogle Scholar
  2. W.J. Allard, J. Matera et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)CrossRefGoogle Scholar
  3. M.K. Baker, K. Mikhitarian et al., Molecular detection of breast cancer cells in the peripheral blood of advanced-stage breast cancer patients using multimarker real-time reverse transcription-polymerase chain reaction and a novel porous barrier density gradient centrifugation technology. Clin. Cancer Res. 9(13), 4865–4871 (2003)Google Scholar
  4. A. Benez, A. Geiselhart et al., Detection of circulating melanoma cells by immunomagnetic cell sorting. J. Clin. Lab. Anal. 13(5), 229–233 (1999)CrossRefGoogle Scholar
  5. P. Boyle, B. Levin, World cancer report (WHO, Geneva, 2008)Google Scholar
  6. S. Braun, B. Naume, Circulating and disseminated tumor cells. J. Clin. Oncol. 23(8), 1623–1626 (2005)CrossRefGoogle Scholar
  7. G.T. Budd, M. Cristofanilli et al., Circulating tumor cells versus imaging—Predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12(21), 6403–6409 (2006)CrossRefGoogle Scholar
  8. T.Y. Chang, V.G. Yadav et al., Cell and protein compatibility of parylene-C surfaces. Langmuir 23(23), 11718–11725 (2007)CrossRefGoogle Scholar
  9. R.J. Cote, P.P. Rosen et al., Prediction of early relapse in patients with operable breast-cancer by detection of occult bone-marrow micrometastases. J. Clin. Oncol. 9(10), 1749–1756 (1991)Google Scholar
  10. M. Cristofanilli, J. Mendelsohn, Circulating tumor cells in breast cancer: advanced tools for “tailored” therapy? PNAS 103(46), 17073–17074 (2006)CrossRefGoogle Scholar
  11. M. Cristofanilli, G.T. Budd et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J. Med. 351(8), 781–791 (2004)CrossRefGoogle Scholar
  12. M. Cristofanilli, D.F. Hayes et al., Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 23(7), 1420–1430 (2005)CrossRefGoogle Scholar
  13. I. Crnic, G. Christofori, Novel technologies and recent advances in metastasis research. Int. J. Dev. Biol. 48(5–6), 573–81 (2004)CrossRefGoogle Scholar
  14. S. Dawood, K. Broglio et al., Circulating tumor cells in metastatic breast cancer. Cancer 113(9), 2422–2430 (2008)CrossRefGoogle Scholar
  15. L. Dirix, P. Van Dam et al., Genomics and circulating tumor cells: promising tools for choosing and monitoring adjuvant therapy in patients with early breast cancer? Curr. Opin. Oncol. 17(6), 551–558 (2005)CrossRefGoogle Scholar
  16. E.A. Evans, R. Skalak et al., Mechanics and thermodynamics of biomembranes.1. CRC Crit. Rev. Bioeng. 3(3), 181–330 (1979)Google Scholar
  17. R.L. Fleischer, P.B. Price et al., Novel filter for biological materials. Science 143(3603), 249–250 (1964)CrossRefGoogle Scholar
  18. R.L. Fleischer, P.B. Price et al., Tracks of charged particles in solids. Science 149(3682), 383–393 (1965)CrossRefGoogle Scholar
  19. R.L. Fleischer, H.W. Alter et al., Particle track etching. Science 178(4058), 255–263 (1972)CrossRefGoogle Scholar
  20. H. Gabor, L. Weiss, Mechanically induced trauma suffered by cancer-cells in passing through pores in polycarbonate membranes. Invasion Metastasis 5(2), 71–83 (1985)Google Scholar
  21. G.P. Gupta, J. Massague, Cancer metastasis: building a framework. Cell 127(4), 679–695 (2006)CrossRefGoogle Scholar
  22. D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)CrossRefGoogle Scholar
  23. J.E. Hardingham, D. Kotasek et al., Immunobead-Pcr—A technique for the detection of circulating tumor-cells using immunomagnetic beads and the polymerase chain-reaction. Cancer Res. 53(15), 3455–3458 (1993)Google Scholar
  24. D.F. Hayes, J. Smerage, Is there a role for circulating tumor cells in the management of breast cancer? Clin. Cancer Res. 14(12), 3646–3650 (2008)CrossRefGoogle Scholar
  25. D.F. Hayes, M. Cristofanilli et al., Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12(14), 4218–4224 (2006)CrossRefGoogle Scholar
  26. R.W.M. Hoetelmans, F.A. Prins et al., Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy. Appl. Immunohistochem. Mol. Morphol. 9(4), 346–351 (2001)CrossRefGoogle Scholar
  27. M. Hosokawa, T. Hayata et al., Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal. Chem. 82(15), 6629–6635 (2010)CrossRefGoogle Scholar
  28. H.J. Kahn, A. Presta et al., Enumeration of circulating tumor cells in the blood of breast cancer patients after filtration enrichment: correlation with disease stage. Breast Cancer Res. Treat. 86(3), 237–247 (2004)CrossRefGoogle Scholar
  29. R. Kwok, E. Evans, Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35(3), 637–652 (1981)CrossRefGoogle Scholar
  30. O. Lara, X.D. Tong et al., Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp. Hematol. 32(10), 891–904 (2004)CrossRefGoogle Scholar
  31. H.K. Lin, S. Zheng et al., Portable filter-based microdevice for detection of circulating tumor cells. (2008) submittedGoogle Scholar
  32. H.K. Lin, S. Zheng et al., Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. (2010) AcceptedGoogle Scholar
  33. S. Maheswaran, L.V. Sequist et al., Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J. Med. 359(4), 366–377 (2008)CrossRefGoogle Scholar
  34. S. Meng, D. Tripathy et al., uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. PNAS 103(46), 17361–17365 (2006)CrossRefGoogle Scholar
  35. S. Nagrath, L.V. Sequist et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–U10 (2007)CrossRefGoogle Scholar
  36. K. Pantel, R.H. Brakenhoff, Dissecting the metastatic cascade. Nat. Rev. Cancer 4(6), 448–456 (2004)CrossRefGoogle Scholar
  37. K. Pantel, R.H. Brakenhoff et al., Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8(5), 329–340 (2008)CrossRefGoogle Scholar
  38. P. Pinzani, B. Salvadori et al., Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum. Pathol. 37(6), 711–718 (2006)CrossRefGoogle Scholar
  39. E. Racila, D. Euhus et al., Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U.S.A. 95(8), 4589–4594 (1998)CrossRefGoogle Scholar
  40. T. Reya, S.J. Morrison et al., Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001)CrossRefGoogle Scholar
  41. S. Riethdorf, H. Fritsche et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin. Cancer Res. 13(3), 920–928 (2007)CrossRefGoogle Scholar
  42. P. Rostagno, J.L. Moll et al., Detection of rare circulating breast cancer cells by filtration cytometry and identification by DNA content: sensitivity in an experimental model. Anticancer Res. 17(4A), 2481–2485 (1997)Google Scholar
  43. E. Sahai, Illuminating the metastatic process. Nat. Rev. Cancer 7(10), 737–749 (2007)CrossRefGoogle Scholar
  44. S.H. Seal, A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 17(5), 637–642 (1964)CrossRefGoogle Scholar
  45. J.B. Smerage, D.F. Hayes, The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br. J. Cancer 94(1), 8–12 (2006)CrossRefGoogle Scholar
  46. P.S. Steeg, Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12(8), 895–904 (2006)CrossRefGoogle Scholar
  47. J. Stingl, C. Caldas, Opinion—Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer 7(10), 791–799 (2007)CrossRefGoogle Scholar
  48. S. Tan, L. Yobas et al., Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11(4), 883–892 (2009)CrossRefGoogle Scholar
  49. G. Vona, A. Sabile et al., Isolation by size of epithelial tumor cells—A new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156(1), 57–63 (2000)Google Scholar
  50. G. Vona, C. Beroud et al., Enrichment, immunomorphological, and genetic characterization of fetal cells circulating in maternal blood. Am. J. Pathol. 160(1), 51–58 (2002)Google Scholar
  51. G. Vona, L. Estepa et al., Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39(3), 792–797 (2004)CrossRefGoogle Scholar
  52. R.A. Weinberg, The biology of cancer (Garland Science, Talyor & Francis Group, LLC, New York, 2007)Google Scholar
  53. L. Weiss, G.W. Schmidschonbein, Biomechanical interactions of cancer-cells with the microvasculature during metastasis. Cell Biophys. 14(2), 187–215 (1989)Google Scholar
  54. M.S. Wicha, S.L. Liu et al., Cancer stem cells: an old idea—A paradigm shift. Cancer Res. 66(4), 1883–1890 (2006)CrossRefGoogle Scholar
  55. L. Zabaglo, M.G. Ormerod et al., Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells. Cytom. A 55A(2), 102–108 (2003)CrossRefGoogle Scholar
  56. S. Zheng, H. Lin et al., Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A 1162(2), 154–161 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Siyang Zheng
    • 1
  • Henry K. Lin
    • 2
  • Bo Lu
    • 3
  • Anthony Williams
    • 4
  • Ram Datar
    • 4
  • Richard J. Cote
    • 4
  • Yu-Chong Tai
    • 3
  1. 1.Department of BioengineeringPennsylvania State UniversityUniversity ParkUSA
  2. 2.BioSciences DivisionOak Ridge National LabOak RidgeUSA
  3. 3.Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Department of PathologyUniversity of MiamiMiamiUSA

Personalised recommendations