Advertisement

Biomedical Microdevices

, Volume 13, Issue 1, pp 179–190 | Cite as

Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells

  • Nhut Tran-Minh
  • Tao Dong
  • Qianhua Su
  • Zhaochu Yang
  • Henrik Jakobsen
  • Frank Karlsen
Article

Abstract

Clogging failure is common for microfilters in living cells concentration; for instance, the CaSki Cell-lines (Epidermoid cervical carcinoma cells) utilizing the flat membrane structure. In order to avoid the clogging, counter-flow concentration units with turbine blade-like micropillar are proposed in microconcentrator design. Due to the unusual geometrical-profiles and extraordinary microfluidic performance, the cells blocking does not occur even at permeate entrances. A counter-flow microconcentrator was designed, with both processing layer and collecting layer arranged in terms of the fractal based honeycomb structure. The device was optimized by coupling Artificial Neuron Network (ANN) and Computational Fluid Dynamics (CFD). The excellent concentration ratio of a final microconcentrator was presented in numerical results.

Keywords

Counter-flow Non-clogging Turbine blade Microconcentrator Artificial neuron network 

Notes

Acknowledgments

This research work is supported by Norwegian Government NFR Funds (Project POCNAD), Natural Science Foundation of Fujian Province, China (No.2007 J0032), and National Natural Science Foundation of China (No.50406019). The authors would like to thank Ph.D Anja Gulliksen, Ph.D Lars Soli, and Ph.D Hanne Skomedal in NorChip AS for their great technical contributions. We also would like to thank Lars Eric Roseng, Matteo J Kapiris, Paolo Calabrese and Eirik Bentzen Egeland in Vestfold University College for their contributions.

References

  1. D.M. Parkin, F. Bray, J. Ferlay, P. Pisani, Int. J. Cancer 94, 153–156 (2001)CrossRefGoogle Scholar
  2. J.M.M. Walboomers, M.V. Jacobs, M.M. Manos et al. , J. Pathol 189, 12–19 (1999)CrossRefGoogle Scholar
  3. T. Molden, I. Kraus, F. Karlsen, H. Skomedal, J.F. Nygard, B. Hagmar, Cancer Epidemiol. Biomark. Prev. 14, 367–372 (2005)CrossRefGoogle Scholar
  4. T. Dong, Z. Yang, Q. Bi, Y. Zhang, Heat Mass Transf. 44, 315–324 (2008a)CrossRefGoogle Scholar
  5. T. Dong, Z.C. Yang, J. Micromech, Microeng. 18, 085012 (2008b)Google Scholar
  6. S. Kuiper, C.J.M. van Rijn, W. Nijdam, M.C. Elwenspoek, J. Membr. Sci. 150, 1–8 (1998)CrossRefGoogle Scholar
  7. R.V. Levy, M.W. Jomitz, Adv. Biochem. Eng. Biotechnol. 98, 1–26 (2006)CrossRefGoogle Scholar
  8. M.M. Mielnik, R.P. Ekatpure, L.R. Sætran, F. Schönfeld, Lab Chip 5, 897–903 (2005)CrossRefGoogle Scholar
  9. K. Arens, P. Rentrop, S.O. Stoll, U. Wever, Appl. Numer. Math. 53, 93–105 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. T. Dong, Z. Yang, H. Wu, Energy Convers. Manage. 47, 2178–2191 (2006)CrossRefGoogle Scholar
  11. W. Sobieski, Annual Review of Agricultural Engineering. 595-104 (2006)Google Scholar
  12. C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, J. Fluid Mech. 140, 223–256 (1984)MATHCrossRefGoogle Scholar
  13. A.M. Abdelhay, Egypt. J. Solids 25, 229–243 (2002)Google Scholar
  14. S.S. Hsieh, C.Y. Lin, C.F. Huang, H.H. Tsai, J. Micromech, Microeng. 14, 436–445 (2004)CrossRefGoogle Scholar
  15. G.L. Morini, Microscale Thermophys. Eng. 8, 15–30 (2004)CrossRefGoogle Scholar
  16. Fluent 6.3 User’s Guide—Chapter 23: Modeling Multiphase Flows (2006)Google Scholar
  17. M. Syamlal, W. Rogers, T. J. O’Brien, MFIX documentation: volume 1, Theory Guide. National Technical Information Service, (Springfield, VA, 1993), DOE/METC-9411004, NTIS/DE9400087Google Scholar
  18. T. Dong, Z. Yang, Q. Su, et al. Microfluid. Nanofluid. Springer: Article in Press, doi: 10.1007/s10404-010-0717-x (2010a)
  19. T. Dong, Q. Su, Z. Yang, F. Karlsen et al. 32nd Conf. IEEE EMBS (Buenos Aires, Argentina, 31August–4 September 2010), pp. 6522–6526 (2010b)Google Scholar
  20. K. Ikuta, S. Maruo, T. Fujisawa, and A. Yamada, IEEE Int. Conf. Micro Electro Mechanical Systems, Orlando. 376–381 (1999)Google Scholar
  21. T. Dong, Z.C. Yang, E.B. Egeland, F. Karlsen and H. Jacobson, IEEE Proc. 16th IPFA, (Suzhou, China, July 2009), pp. 759–763, doi: 10.1109/IPFA.2009.5232727 (2009)
  22. T. Dong, Q. Su, Z. Yang, Y. Zhang, et al. J. Micromech. Microeng. 20 115021 (2010c)Google Scholar
  23. Vincent. “Reverse engineering Bezier curves”, PolymathProgrammer,Available: http://polymathprogrammer.com/2007/06/27/reverse-engineering-bezier-curves/
  24. D. Salomon, Curves and surfaces for computer graphics, (Springer, 2005), pp. 251–294Google Scholar
  25. I.G. Currie, Fundamental mechanics of fluids (McGraw-Hill, Inc, New York, 1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nhut Tran-Minh
    • 1
  • Tao Dong
    • 1
  • Qianhua Su
    • 1
  • Zhaochu Yang
    • 1
  • Henrik Jakobsen
    • 1
  • Frank Karlsen
    • 1
    • 2
  1. 1.I.M.S.T./TekMar, Norwegian Center of Expertise on Micro- and NanotechnologyVestfold University CollegeTønsbergNorway
  2. 2.NorChip A.S.KlokkarstraNorway

Personalised recommendations