Biomedical Microdevices

, Volume 13, Issue 1, pp 143–146 | Cite as

Microfluidic blood filtration device

  • George Maltezos
  • John Lee
  • Aditya Rajagopal
  • Kee Scholten
  • Emil Kartalov
  • Axel Scherer
Article

Abstract

Rapid decentralized biomedical diagnostics have become increasingly necessary in a medical environment of growing costs and mounting demands on healthcare personnel and infrastructure. Such diagnostics require low-cost novel devices that can operate at bedside or in doctor offices using small amounts of sample that can be extracted and processed on the spot. Thus, point-of-care sample preparation is an important component of the necessary diagnostic paradigm shift. We therefore introduce a microfluidic device which produces plasma from whole blood. The device is inexpensive, reliable, easy to fabricate, and requires only 3.5 kPa pressure to operate. The device is fully compatible with microfluidic diagnostic chips. The output 23-gauge microtube of the former can be directly plugged into the input ports of the latter allowing immediate applicability in practice as a sample-prep pre-stage to a variety of emergent microfluidic diagnostic devices. In addition, the shown approach of filter encapsulation in elastomer has principle importance as it is compatible with and applicable to microfluidic sample-prep integration with analytical stages within the same elastomeric chip. This can eventually lead to finger-prick blood tests in point-of-care settings.

Keywords

Microfluidic Blood Filter Diagnostic Point-of-care Sample-prep 

Supplementary material

10544_2010_9479_MOESM1_ESM.pdf (3.3 mb)
ESM1(PDF 3414 kb)

References

  1. X. Cheng, G. Chen, W.R. Rodriguez, Anal. Bioanal. Chem. 393, 487 (2009)CrossRefGoogle Scholar
  2. R. Fan, O. Vermesh, A. Srivastava, B.K.H. Yen, L. Qin, H. Ahmad, G.A. Kwong, C.C. Liu, J. Gould, L. Hood, J.R. Heath, Nat. Biotechnol. 26(12), 1373 (2008)CrossRefGoogle Scholar
  3. T.G. Henares, F. Mizutani, H. Hisamoto, Anal. Chim. Acta 611, 17 (2008)CrossRefGoogle Scholar
  4. L.W. Henderson, Hemofiltration, Springer Verlag, (1986)Google Scholar
  5. E.P. Kartalov, J. In-Vitro Diagnostic Technology, Sept (2006)Google Scholar
  6. E.P. Kartalov, W.F. Anderson, A. Scherer, J. Nanosci. Nanotechnol. 6(8), 2265 (2006)CrossRefGoogle Scholar
  7. E.P. Kartalov, D.H. Lin, D.T. Lee, W.F. Anderson, C.R. Taylor, A. Scherer, Electrophoresis 29, 5010 (2008)CrossRefGoogle Scholar
  8. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544 (2003)CrossRefGoogle Scholar
  9. D.H. Lin, C.R. Taylor, W.F. Anderson, A. Scherer, E.P. Kartalov, J. Chromatogr. B, 878 (2009)Google Scholar
  10. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)CrossRefGoogle Scholar
  11. J. Moorthy, D.J. Beebe, Lab Chip 3, 62 (2003)CrossRefGoogle Scholar
  12. S. Thorslund, O. Klett, F. Nikolajeff, K. Markides, J. Berquist, Biomed. Microdevices 8, 73 (2006)CrossRefGoogle Scholar
  13. V. VanDelinder, A. Groisman, Anal. Chem. 78, 3765 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • George Maltezos
    • 1
  • John Lee
    • 1
  • Aditya Rajagopal
    • 1
  • Kee Scholten
    • 1
  • Emil Kartalov
    • 1
    • 2
  • Axel Scherer
    • 1
  1. 1.Department of Electrical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Pathology Department, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations