Biomedical Microdevices

, Volume 13, Issue 1, pp 89–95

Modulating malignant epithelial tumor cell adhesion, migration and mechanics with nanorod surfaces

  • Jiyeon Lee
  • Byung Hwan Chu
  • Shamik Sen
  • Anand Gupte
  • T. J. Chancellor
  • Chih-Yang Chang
  • Fan Ren
  • Sanjay Kumar
  • Tanmay P. Lele


The failure of tumor stents used for palliative therapy is due in part to the adhesion of tumor cells to the stent surface. It is therefore desirable to develop approaches to weaken the adhesion of malignant tumor cells to surfaces. We have previously developed SiO2 coated nanorods that resist the adhesion of normal endothelial cells and fibroblasts. The adhesion mechanisms in malignant tumor cells are significantly altered from normal cells; therefore, it is unclear if nanorods can similarly resist tumor cell adhesion. In this study, we show that the morphology of tumor epithelial cells cultured on nanorods is rounded compared to flat surfaces and associated with decreased cellular stiffness and non-muscle myosin II phosphorylation. Tumor cell viability and proliferation was unchanged on nanorods. Adherent cell numbers were significantly decreased while single tumor cell motility was increased on nanorods compared to flat surfaces. Together, these results suggest that nanorods can be used to weaken malignant tumor cell adhesion, and therefore potentially improve tumor stent performance.


Nanostructured materials Tumor cell adhesion Tumor stent Nanorods 

Supplementary material

10544_2010_9473_MOESM1_ESM.doc (890 kb)
ESM 1(DOC 889 kb)


  1. S. Ammoun, D. Lindholm, H. Wootz, K.E. Akerman, J.P. Kukkonen, J. Biol. Chem. 281, 834–842 (2006)CrossRefGoogle Scholar
  2. M. Arnold, E.A. Cavalcanti-Adam, R. Glass, J. Blummel, W. Eck, M. Kantlehner, H. Kessler, J.P. Spatz, Chemphyschem 5, 383–388 (2004)CrossRefGoogle Scholar
  3. G. Balasundaram, T.J. Webster, Nanomedicine (Lond) 1, 169–176 (2006)CrossRefGoogle Scholar
  4. E.A. Cavalcanti-Adam, A. Micoulet, J. Blummel, J. Auernheimer, H. Kessler, J.P. Spatz, Eur. J. Cell Biol. 85, 219–224 (2006)CrossRefGoogle Scholar
  5. E.A. Cavalcanti-Adam, T. Volberg, A. Micoulet, H. Kessler, B. Geiger, J.P. Spatz, Biophys. J. 92, 2964–2974 (2007)CrossRefGoogle Scholar
  6. C.H. Choi, S.H. Hagvall, B.M. Wu, J.C. Dunn, R.E. Beygui, C.J.K. CJ, Biomaterials 28, 1672–1679 (2007)CrossRefGoogle Scholar
  7. B.H. Chu, L.C. Leu, C.Y. Chang, F. Lugo, D. Norton, T. Lele, B. Keselowsky, S.J. Pearton, F. Ren, Appl. Phys. Lett. 93, 233111 (2008)CrossRefGoogle Scholar
  8. Y.W. Chun, T.J. Webster, Ann. Biomed. Eng. 37, 2034–2047 (2009)CrossRefGoogle Scholar
  9. K. Clark, M. Langeslag, C.G. Figdor, F.N. van Leeuwen, Trends Cell Biol. 17, 178–186 (2007)CrossRefGoogle Scholar
  10. G. Costamagna, M. Marchese, F. Iacopini, Eur. J. Gastroenterol. Hepatol. 18, 1177–1180 (2006)CrossRefGoogle Scholar
  11. J.S. Desgrosellier, D.A. Cheresh, Nat. Rev. Cancer 10, 9–22 (2010)CrossRefGoogle Scholar
  12. R.B. Dickinson, R.T. Tranquillo, AICHE J. 39, 1995–2010 (1993)CrossRefGoogle Scholar
  13. A. Dormann, S. Meisner, N. Verin, A. Wenk Lang, Endoscopy 36, 543–550 (2004)CrossRefGoogle Scholar
  14. C.M. Hale, S.X. Sun, D. Wirtz, PLoS ONE 4, e7054 (2009)CrossRefGoogle Scholar
  15. Y.M. Han, G.Y. Jin, S.O. Lee, H.S. Kwak, G.H. Chung, J. Vasc. Interv. Radiol. 14, 1291–1301 (2003)Google Scholar
  16. B.D. Harms, G.M. Bassi, A.R. Horwitz, D.A. Lauffenburger, Biophys. J. 88, 1479–1488 (2005)CrossRefGoogle Scholar
  17. D.E. Ingber, FASEB J. 20, 811–827 (2006)CrossRefGoogle Scholar
  18. H. Isayama, Y. Komatsu, T. Tsujino, H. Yoshida, M. Tada, Y. Shiratori, T. Kawabe, M. Omata, Gastrointest. Endosc. 55, 366–370 (2002)CrossRefGoogle Scholar
  19. B.S. Kang, S.J. Pearton, F. Ren, Appl. Phys. Lett. 90, 083104 (2007)CrossRefGoogle Scholar
  20. N.W. Karuri, P.F. Nealey, C.J. Murphy, R.M. Albrecht, Scanning 30, 405–413 (2008)CrossRefGoogle Scholar
  21. W. Kim, J.K. Ng, M.E. Kunitake, B.R. Conklin, P. Yang, J. Am. Chem. Soc. 129, 7228–7229 (2007)CrossRefGoogle Scholar
  22. J.Y. Lee, B.S. Kang, B. Hicks, T.F. Chancellor, B.H. Chu, H.T. Wang, B.G. Keselowsky, F. Ren, T.P. Lele, Biomaterials 29, 3743–3749 (2008)CrossRefGoogle Scholar
  23. J. Lee, B.H. Chu, K.H. Chen, F. Ren, T.P. Lele, Biomaterials 30, 4488–4493 (2009)CrossRefGoogle Scholar
  24. M.T. McLoughlin, M.F. Byrne, World J. Gastroenterol. 14, 3798–3803 (2008)CrossRefGoogle Scholar
  25. K.R. Milner, C.A. Siedlecki, Int. J. Nanomedicine 2, 201–211 (2007)Google Scholar
  26. S. Mwenifumbo, M. Li, J. Chen, A. Beye, W. Soboyejo, J. Mater. Sci. Mater. Med. 18, 9–23 (2007)CrossRefGoogle Scholar
  27. S.P. Palecek, J.C. Loftus, M.H. Ginsberg, D.A. Lauffenburger, A.F. Horwitz, Nature 385, 537–540 (1997)CrossRefGoogle Scholar
  28. J. Park, S. Bauer, K. von der Mark, P. Schmuki, Nano Lett. 7, 1686–1691 (2007)CrossRefGoogle Scholar
  29. J. Park, S. Bauer, P. Schmuki, K. von der Mark, Nano Lett. 9, 3157–3164 (2009)CrossRefGoogle Scholar
  30. M.J. Paszek, N. Zahir, K.R. Johnson, J.N. Lakins, G.I. Rozenberg, A. Gefen, C.A. Reinhart-King, S.S. Margulies, M. Dembo, D. Boettiger, D.A. Hammer, V.M. Weaver, Cancer Cell 8, 241–254 (2005)CrossRefGoogle Scholar
  31. A.A. Patel, R.G. Thakar, M. Chown, P. Ayala, T.A. Desai, S. Kumar, Biomed. Microdevices 12, 287–296 (2010)CrossRefGoogle Scholar
  32. D.G. Perdue, M.L. Freeman, J.A. DiSario, D.B. Nelson, M.B. Fennerty, J.G. Lee, C.S. Overby, M.E. Ryan, G.S. Bochna, H.W. Snady, J.P. Moore, J. Clin. Gastroenterol. 42, 1040–1046 (2008)CrossRefGoogle Scholar
  33. S. Qi, C. Yi, W. Chen, C.C. Fong, S.T. Lee, M. Yang, Chembiochem 8, 1115–1118 (2007)CrossRefGoogle Scholar
  34. C. Rotsch, K. Jacobson, M. Radmacher, Proc. Natl Acad. Sci. USA 96, 921–926 (1999)CrossRefGoogle Scholar
  35. S. Sen, S. Kumar, Cell. Mol. Bioeng. 2, 218–230 (2009)CrossRefGoogle Scholar
  36. S. Sen, S. Subramanian, D.E. Discher, Biophys. J. 89, 3203–3213 (2005)CrossRefGoogle Scholar
  37. P.D. Siersema, Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 142–152 (2008)CrossRefGoogle Scholar
  38. R.G. Thakar, M.G. Chown, A. Patel, L. Peng, S. Kumar, T.A. Desai, Small 4, 1416–1424 (2008)CrossRefGoogle Scholar
  39. R.W. Tilghman, J.T. Parsons, Semin. Cancer Biol. 18, 45–52 (2008)CrossRefGoogle Scholar
  40. O. Togawa, T. Kawabe, H. Isayama, Y. Nakai, T. Sasaki, T. Arizumi, S. Matsubara, Y. Ito, N. Yamamoto, N. Sasahira, K. Hirano, T. Tsujino, N. Toda, M. Tada, H. Yoshida, M. Omata, J. Clin. Gastroenterol. 42, 546–549 (2008)CrossRefGoogle Scholar
  41. N.P. Westcott, Y. Lou, J.F. Muth, M.N. Yousaf, Langmuir 25, 11236–11238 (2009)CrossRefGoogle Scholar
  42. F. Ye, G. Hu, D. Taylor, B. Ratnikov, A.A. Bobkov, M.A. McLean, S.G. Sligar, K.A. Taylor, M.H. Ginsberg, J. Cell Biol. 188, 157–173 (2010)CrossRefGoogle Scholar
  43. E.K. Yim, R.M. Reano, S.W. Pang, A.F. Yee, C.S. Chen, K.W. Leong, Biomaterials 26, 5405–5413 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jiyeon Lee
    • 1
  • Byung Hwan Chu
    • 1
  • Shamik Sen
    • 2
  • Anand Gupte
    • 3
  • T. J. Chancellor
    • 1
  • Chih-Yang Chang
    • 1
  • Fan Ren
    • 1
  • Sanjay Kumar
    • 2
  • Tanmay P. Lele
    • 1
  1. 1.Department of Chemical EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Division of Gastroenterology, Department of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations