Biomedical Microdevices

, Volume 13, Issue 1, pp 59–68 | Cite as

First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology

  • C. HenleEmail author
  • M. Raab
  • J. G. Cordeiro
  • S. Doostkam
  • A. Schulze-Bonhage
  • T. Stieglitz
  • J. Rickert


A novel computer aided manufacturing (CAM) method for electrocorticography (ECoG) microelectrodes was developed to be able to manufacture small, high density microelectrode arrays based on laser-structuring medical grade silicone rubber and high purity platinum. With this manufacturing process, we plan to target clinical applications, such as presurgical epilepsy monitoring, functional imaging during cerebral tumor resections and brain-computer interface control in paralysed patients, in the near future. This paper describes the manufacturing, implantation and long-term behaviour of such an electrode array. In detail, we implanted 8-channel electrode arrays subdurally over rat cerebral cortex over a period of up to 25 weeks. Our primary objective was to ascertain the electrode’s stability over time, and to analyse the host response in vivo. For this purpose, impedance measurements were carried out at regular intervals over the first 18 weeks of the implantation period. The impedances changed between day 4 and day 7 after implantation, and then remained stable until the end of the implantation period, in accordance with typical behaviour of chronically implanted microelectrodes. A post-mortem histological examination was made to assess the tissue reaction due to the implantation. A mild, chronically granulated inflammation was found in the area of the implant, which was essentially restricted to the leptomeninges. Overall, these findings suggest that the concept of the presented ECoG-electrodes is promising for use in long-term implantations.


Neuroprostheses Subdural electrodes Laser technology Brain-computer interface Chronic implantation Impedance spectroscopy 



The authors would like to thank Dr. Martin Schuettler for discussions and Wolfgang Meier for assembly. This study was supported by the German Ministry for Education and Research (BMBF Grant: Go Bio, FZK: 313891).

Conflict of Interest Statement

The authors agree to declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. J.D. Bancroft, M. Gamble, Churchill Livingstone (2002)Google Scholar
  2. Y.Y. Duan, G.M. Clark, R.S.C. Cowan, Biomaterials 25, 3813 (2004)CrossRefGoogle Scholar
  3. W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, IEEE T Bio-Med Eng 52, 1295 (2005)CrossRefGoogle Scholar
  4. W.J. Freeman, L.J. Rogers, M.D. Holmes, D.L. Silbergeld, J Neurosci Meth 95, 111 (2000)CrossRefGoogle Scholar
  5. A. Gharabaghi, A. Koerbel, S.K. Rosahl, M. Tatagiba, M. Samii, Neurosurg 60, 124 (2007)CrossRefGoogle Scholar
  6. R.A. Green, J.S. Ordonez, M. Schuettler, L.A. Poole-Warren, N.H. Lovell, G.J. Suaning, Biomaterials 31, 886 (2010)CrossRefGoogle Scholar
  7. W.M. Grill, J.T. Mortimer, Ann Biomed Eng 22, 23 (1994)CrossRefGoogle Scholar
  8. C. Henle, M. Schuettler, J.S. Ordonez, T. Stieglitz, P IEEE EMBS, 4208–4211 (2008)Google Scholar
  9. B.A. Hollenberg, C.D. Richards, R. Richards, D.F. Bahr, D.M. Rector, J Neurosci Meth 153, 147 (2006)CrossRefGoogle Scholar
  10. C. Jeschke, M. Schuettler, L.M. Reindl, T. Stieglitz, P IFMBE, 2447–2450 (2008)Google Scholar
  11. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, F.G. Ojemann, D.W. Moran, J Neural Eng 1, 63–71 (2004)CrossRefGoogle Scholar
  12. E.T. McAdams, J. Jossinet, Physiol Meas 16, A1–A13 (1995)CrossRefGoogle Scholar
  13. A. Mercanzini, P. Colin, J.-C. Bensadoun, A. Bertsch, P. Renaud, IEEE T Bio-Med Eng 56, 1909–1918 (2009)CrossRefGoogle Scholar
  14. J.-U. Meyer, T. Stieglitz, O. Scholz, W. Haberer, H. Beutel, IEEE T Adv Pack 24, 366–374 (2001)CrossRefGoogle Scholar
  15. V.M. Mirsky, M. Riepl, O.S. Wolfbeis, Biosens Bioelectron 12, 977–989 (1997)CrossRefGoogle Scholar
  16. J. Newman, J Electrochem Soc 113, 501–502 (1966)CrossRefGoogle Scholar
  17. G. Paxinos, J.C. Watson, The rat brain in stereoetaxic coordinates (Elsevier Academic, San Diego, 2007)Google Scholar
  18. T. Pistohl, T. Ball, A. Schulze-Bonhage, A. Aertsen, C. Mehring, J Neurosci Meth 167, 105–114 (2007)CrossRefGoogle Scholar
  19. V.S. Polikov, P.A. Tresco, W.M. Reichert, J Neurosci Meth 148, 1–18 (2005)CrossRefGoogle Scholar
  20. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J Neural Eng 6(3), 036003 (2009)CrossRefGoogle Scholar
  21. J. Salzmann, O.P. Linderholm, J.L. Guyomard, M. Simonutti, M. Paques, M. Lecchi, J. Sommerhalder, M. Pelizzone, J. Sahel, P. Renaud, A.B. Safran, S. Picaud, Brit J Ophthalmol 90, 1183–1187 (2006)CrossRefGoogle Scholar
  22. G. Schalk, J. Kubanek, K.J. Miller, N.R. Anderson, E.C. Leuthardt, F.G. Ojemann, D. Limbrick, D.W. Moran, L.A. Gerhardt, J.R. Wolpaw, J Neural Eng 4, 264–275 (2007)CrossRefGoogle Scholar
  23. M. Schuettler, P IEEE EMBS, 186–189 (2007)Google Scholar
  24. M. Schuettler, C. Henle, J.S. Ordonez, W. Meier, T. Guenter, T. Stieglitz, P IEEE EMBS, 3212–3215 (2008)Google Scholar
  25. M. Schuettler, C. Henle, J.S. Ordonez, G.J. Suaning, N.H. Lovell, T. Stieglitz, P IEEE Conf on Neural Eng, 53–56 (2007)Google Scholar
  26. M. Schuettler, K.P. Koch, T. Stieglitz, P IFESS, 306–310 (2003)Google Scholar
  27. M. Schuettler, S. Stiess, B.V. King, G.J. Suaning, J Neural Eng 2, 121–128 (2005)CrossRefGoogle Scholar
  28. M. Slutzky, L.R. Jordan, L.E. Miller, P IEEE EMBS, 3771–3774 (2008)Google Scholar
  29. T. Stieglitz, in Neuroprosthetics—Theorie and Practice, ed. by K.W. Horch, G.S. Dhillon, (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004), p. 475Google Scholar
  30. T. Stieglitz, B. Rubehn, C. Henle, S. Kisban, S. Herwik, P. Ruther, M. Schuettler, Prog Brain Res 175, 297–315 (2009)CrossRefGoogle Scholar
  31. H. Thoma, H.J. Gerner, J. Holle, P. Kluger, W. Mayr, B. Meister, G. Schwanda, H. Stohr, Am Soc Artif Internal Organs T 10, 472–479 (1987)Google Scholar
  32. R.J. Vetter, J.C. Williams, J.F. Hetke, E.A. Nunamaker, D.R. Kipke, IEEE T Bio-Med Eng 51, 896–904 (2004)CrossRefGoogle Scholar
  33. J.C. Williams, J.A. Hippensteel, J. Dilgen, W.G. Shain, D.R. Kipke, J Neural Eng 4, 410–423 (2007)CrossRefGoogle Scholar
  34. J.C. Williams, R.L. Rennaker, D.R. Kipke, Brain Res Protoc 4, 303–313 (1999)CrossRefGoogle Scholar
  35. A.R. Wyler, G.A. Ojemann, E. Lettich, A.A. Ward, J Neurosurg 60, 1195–1200 (1984)CrossRefGoogle Scholar
  36. K. Yoshida, J.J. Struijk, in Neuroprosthetics—Theorie and Practice, ed. by K.W. Horch, G.S. Dhillon (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004), p. 342CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • C. Henle
    • 1
    Email author
  • M. Raab
    • 2
  • J. G. Cordeiro
    • 3
  • S. Doostkam
    • 4
  • A. Schulze-Bonhage
    • 3
  • T. Stieglitz
    • 1
    • 5
  • J. Rickert
    • 2
    • 5
  1. 1.Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering—IMTEKUniversity of FreiburgFreiburg i. BreisgauGermany
  2. 2.Institute for Biology IUniversity of FreiburgFreiburg i. BreisgauGermany
  3. 3.Epilepsy Center FreiburgUniversity Hospital FreiburgFreiburg i. BreisgauGermany
  4. 4.Department of NeuropathologyUniversity Hospital FreiburgFreiburg i. BreisgauGermany
  5. 5.Bernstein Center FreiburgUniversity of FreiburgFreiburg i. BreisgauGermany

Personalised recommendations