Biomedical Microdevices

, Volume 13, Issue 1, pp 51–58 | Cite as

Self-folding micropatterned polymeric containers

  • Anum Azam
  • Kate E. Laflin
  • Mustapha Jamal
  • Rohan Fernandes
  • David H. Gracias
Article

Abstract

We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

Keywords

Cell encapsulation therapy Tissue engineering Drug delivery Microcontainers Lithography Bio-MEMS 

Notes

Acknowledgements

We acknowledge Christina Randall for providing the beta cells used in this study and Jatinder Randhawa for valuable discussions on self-assembly of larger-scale scaffolds. We also thank Madeline Cohn for her part in early experimental work with the polymeric containers. This research was supported by the NIH Director’s New Innovator Award Program, part of the NIH Roadmap for Medical Research, Grant No. 1-DP2-OD004346-01, DP2-OD004346-01S1, the Iacocca Family Foundation and the Camille & Henry Dreyfus Foundation.

References

  1. D.K. Armani, C. Liu, J. Micromech. Microeng. 10, 80–84 (2000)CrossRefGoogle Scholar
  2. J.H. Cho, D.H. Gracias, Nano Lett. 9, 4049–4052 (2009)CrossRefGoogle Scholar
  3. J.H. Cho, A. Azam, D.H. Gracias, Langmuir (2010). doi:10.1021/la1013889 Google Scholar
  4. A.G.A. Coombes, S.C. Rizzi, M. Williamson, J.E. Barralet, S. Downes, W.A. Wallace, Biomaterials 25, 315–325 (2004)CrossRefGoogle Scholar
  5. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, M. Ferrari, Biotechnol. Bioeng. 57, 118–120 (1998)CrossRefGoogle Scholar
  6. Y. Du, E. Lo, S. Ali, A. Khademhosseini, Proc. Natl. Acad. Sci. U.S.A. 105, 9522–9527 (2008)CrossRefGoogle Scholar
  7. J.G. Fernandez, A. Khademhosseini, Adv. Mater. 22, 2538–2541 (2010)Google Scholar
  8. A. Fritze, F. Hens, A. Kimpfler, R. Shubert, R. Peschka-Süss, Biochim. Biophys. Acta, Biomembr. 1758, 1633–1640 (2006)CrossRefGoogle Scholar
  9. B. Gimi, T.G. Leong, Z. Gu, M. Yang, D. Artemov, Z.M. Bhujwalla, D.H. Gracias, Biomed. Microdevices 7, 341–345 (2005)CrossRefGoogle Scholar
  10. B. Gimi, D. Artemov, T. Leong, D.H. Gracias, W. Gilson, M. Stuber, Z.M. Bhujwalla, Cell Transplant. 16, 403–408 (2007)Google Scholar
  11. A. Groisman, C. Lobo, H. Cho, J.K. Campbell, Y.S. Dufour, A.M. Stevens, A. Levchenko, Nat. Methods 2, 685–689 (2005)CrossRefGoogle Scholar
  12. Z.Y. Gu, Y.M. Chen, D.H. Gracias, Langmuir 20, 11308–11311 (2004)CrossRefGoogle Scholar
  13. T. Hanemann, V. Piotter, R. Ruprecht, J. H. Hausselt, in Micro- and Nanopatterning Polymers, ed. by H. Ito, E. Reichmanis, O. Nalamasu, T. Ueno (American Chemical Society, Washington, D.C., 1998), pp. 67–75CrossRefGoogle Scholar
  14. P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab Chip 5, 44–48 (2005)CrossRefGoogle Scholar
  15. E. Iwase, I. Shimoyama, J. Microelectromech. Syst. 14, 1265–1271 (2005)CrossRefGoogle Scholar
  16. S. Kusuda, S. Sawano, S. Konishi, Presented at IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), 21–25 January 2007Google Scholar
  17. J. Kwon, K. Trivedi, N.V. Krishnamurthy, W. Hu, J.-B. Lee, B. Gimi, J. Vac. Sci. Technol., B, Microelectron. Nanometer Struct. Process. Meas. Phenom. 27, 2795–2800 (2009)CrossRefGoogle Scholar
  18. C.X.F. Lam, M.M. Savalani, S.-H. Teoh, D.W. Hutmacher, Biomed. Mater. 3, 034108–22 (2008)CrossRefGoogle Scholar
  19. A.P. Lee, D.R. Clarlo, P.A. Krulevitch, S. Lehew, J. Trevino, M.A. Northrup, Sens. Actuators, A 54, 755–759 (1996)CrossRefGoogle Scholar
  20. K.H. Lee, H.Y. Kim, M.S. Khil, Y.M. Ra, D.R. Lee, Polymer 44, 1287–1294 (2003)CrossRefGoogle Scholar
  21. T.G. Leong, P. Lester, T. Koh, E. Call, D.H. Gracias, Langmuir 23, 8747–8751 (2007)CrossRefGoogle Scholar
  22. T.G. Leong, C.L. Randall, B.R. Benson, A.M. Zarafshar, D.H. Gracias, Lab Chip 8, 1621–1625 (2008)CrossRefGoogle Scholar
  23. T.G. Leong, A.M. Zarafshar, D.H. Gracias, Small 6, 792–806 (2010)CrossRefGoogle Scholar
  24. J. Peña, T. Corrales, I. Izquierdo-Barba, M.C. Serrano, M.T. Portolés, R. Pagani, M. Vallet-Regí, J. Biomed. Mater. Res. 76A, 788–797 (2006)CrossRefGoogle Scholar
  25. A.J. Postgate, D. Burling, A. Gupta, A. Fitzpatrick, C. Fraser, Dig. Dis. Sci. 53, 2732–2738 (2008)CrossRefGoogle Scholar
  26. S. Prakash, H. Soe-Lin, Trends Biomater. Artif. Organs 18, 24–35 (2004)Google Scholar
  27. C.L. Randall, A. Gillespie, S. Singh, T.G. Leong, D.H. Gracias, Anal. Bioanal. Chem. 393, 1217–1224 (2009)CrossRefGoogle Scholar
  28. S.L. Tao, K. Popat, T.A. Desai, Nat. Protoc. 1, 3153–3158 (2007)CrossRefGoogle Scholar
  29. J. Tien, T.L. Breen, G.M. Whitesides, J. Am. Chem. Soc. 120, 12670–12671 (1998)CrossRefGoogle Scholar
  30. B.W. Tillman, S.K. Yazdani, S.J. Lee, R.L. Geary, A. Atala, J.J. Yoo, Biomaterials 30, 583–588 (2009)CrossRefGoogle Scholar
  31. Y. Wan, H. Wu, X. Cao, S. Dalai, Polym. Degrad. Stab. 93, 1736–1741 (2008)CrossRefGoogle Scholar
  32. D.B. Weibel, Proc. Natl. Acad. Sci. U.S.A. 105, 18075–18076 (2008)CrossRefGoogle Scholar
  33. G.E. Wnek, G.L. Bowlin, Encyclopedia of Biomaterials and Bioengineering, 2nd edn. (Informa Healthcare, London, 2008), pp. 8–31Google Scholar
  34. A.P. Wong, R. Perez-Castillejos, J.C. Love, G.M. Whitesides, Biomaterials 29, 1853–1861 (2008)CrossRefGoogle Scholar
  35. H. Ye, C. Randall, T. Leong, D. Slanac, E. Call, D.H. Gracias, Angew. Chem. 46, 4991–4994 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anum Azam
    • 1
  • Kate E. Laflin
    • 1
  • Mustapha Jamal
    • 1
  • Rohan Fernandes
    • 1
  • David H. Gracias
    • 1
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations