Biomedical Microdevices

, Volume 13, Issue 1, pp 41–50 | Cite as

Integrated microbioreactor for culture and analysis of bacteria, algae and yeast

  • Sam H. Au
  • Steve C. C. Shih
  • Aaron R. WheelerEmail author


We introduce a micro-scale bioreactor for automated culture and density analysis of microorganisms. The microbioreactor is powered by digital microfluidics (DMF) and because it is used with bacteria, algae and yeast, we call it the BAY microbioreactor. Previous miniaturized bioreactors have relied on microchannels which often require valves, mixers and complex optical systems. In contrast, the BAY microbioreactor is capable of culturing microorganisms in distinct droplets on a format compatible with conventional bench-top analyzers without the use of valves, mixers or pumps. Bacteria, algae and yeast were grown for up to 5 days with automated semi-continuous mixing and temperature control. Cell densities were determined by measuring absorbances through transparent regions of the devices, and growth profiles were shown to be comparable to those generated in conventional, macro-scale systems. Cell growth and density measurements were integrated in the microbioreactor with a fluorescent viability assay and transformation of bacteria with a fluorescent reporter gene. These results suggest that DMF may be a useful new tool in automated culture and analysis of microorganisms for a wide range of applications.


Digital microfluidics Microorganism Bacteria Algae Yeast Cell culture Microbioreactor Absorbance Optical density 



We thank Prof. Kevin Truong (Institute of Biomaterials and Biomedical Engineering, IBBME, University of Toronto) for generously donating E. coli and plasmid DNA, Prof. Igor Stagjlar (Department of Medical Genetics and Microbiology, University of Toronto) for generously donating S. cerevisiae and Prof. William Ryu (Department of Physics, University of Toronto) for the use of the cold room. We also thank Evan Mills (IBBME, University of Toronto) and Dawn Edmonds (Department of Medical Genetics and Microbiology, University of Toronto) for their assistance with bacterial transformation and yeast culture. We thank Kamlesh D. Patel and Pam Lane (Sandia National Laboratories, Livermore, CA) for discussion and assistance with algae culture. We thank the Canadian Institutes of Health Research (CIHR) for financial support. SHA and SCCS thank NSERC (Natural Sciences and Engineering Research Council) for graduate fellowships, and ARW thanks CRC for a Canada Research Chair.


  1. M. Abdelgawad, M.W. Watson, A.R. Wheeler, Lab Chip 9, 1046 (2009)CrossRefGoogle Scholar
  2. M. Abdelgawad, A.R. Wheeler, Adv. Mat 21, 920 (2009)CrossRefGoogle Scholar
  3. M. Abdelgawad, S.L. Freire, H. Yang, A.R. Wheeler, Lab Chip 8, 672 (2008)CrossRefGoogle Scholar
  4. S.N. Bailey, R.Z. Wu, D.M. Sabatini, Drug Discov Today 7, S113 (2002)CrossRefGoogle Scholar
  5. S.N. Bailey, D.M. Sabatini, B.R. Stockwell, Proc Natl Acad Sci USA 101, 16144 (2004)CrossRefGoogle Scholar
  6. F.K. Balagadde, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Science 309, 137 (2005)CrossRefGoogle Scholar
  7. I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, Lab Chip 10, 1536 (2010)CrossRefGoogle Scholar
  8. I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Lab Chip 8, 519 (2008)CrossRefGoogle Scholar
  9. G.P.L. Cereghino, J.M. Cregg, Curr Opin Biotechnol 10, 422 (1999)CrossRefGoogle Scholar
  10. Y.H. Chang, G.B. Lee, F.C. Huang, Y.Y. Chen, J.L. Lin, Biomed Microdevices 8, 215 (2006)CrossRefGoogle Scholar
  11. D. Chatterjee, A.J. Ytterberg, S.U. Son, J.A. Loo, R.L. Garrell, Anal Chem 82, 2095 (2010)CrossRefGoogle Scholar
  12. Y. Chisti, Trends Biotechnol 26, 126 (2008)CrossRefGoogle Scholar
  13. A.L. Demain, J.L. Adrio, Mol Biotechnol 38, 41 (2008)CrossRefGoogle Scholar
  14. S. Faley, K. Seale, J. Hughey, D. K. Schaffer, S. VanCompernolle, B. McKinney, F. Baudenbacher, D. Unutmaz, J. P. Wikswo, Lab Chip. 8, 1700 (2008)Google Scholar
  15. S. L. Faley, M. Copland, D. Wlodkowic, W. Kolch, K. T. Seale, J. P. Wikswo, J. M. Cooper, Lab Chip. 9, 2659 (2009)Google Scholar
  16. G.B. Fogel, C.F. Brunk, Anal Biochem 260, 80 (1998)CrossRefGoogle Scholar
  17. J. Fowler, M. Hyejin, K. Chang-Jin, in Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on, p. 97–100 (2002)Google Scholar
  18. G. Giaever, A.M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, S. Dow, A. Lucau-Danila, K. Anderson, B. Andre, A.P. Arkin, A. Astromoff, M. El Bakkoury, R. Bangham, R. Benito, S. Brachat, S. Campanaro, M. Curtiss, K. Davis, A. Deutschbauer, K.-D. Entian, P. Flaherty, F. Foury, D.J. Garfinkel, M. Gerstein, D. Gotte, U. Guldener, J.H. Hegemann, S. Hempel, Z. Herman, D.F. Jaramillo, D.E. Kelly, S.L. Kelly, P. Kotter, D. LaBonte, D.C. Lamb, N. Lan, H. Liang, H. Liao, L. Liu, C. Luo, M. Lussier, R. Mao, P. Menard, S.L. Ooi, J.L. Revuelta, C.J. Roberts, M. Rose, P. Ross-Macdonald, B. Scherens, G. Schimmack, B. Shafer, D.D. Shoemaker, S. Sookhai-Mahadeo, R.K. Storms, J.N. Strathern, G. Valle, M. Voet, G. Volckaert, C-y Wang, T.R. Ward, J. Wilhelmy, E.A. Winzeler, Y. Yang, G. Yen, E. Youngman, K. Yu, H. Bussey, J.D. Boeke, M. Snyder, P. Philippsen, R.W. Davis, M. Johnston, Nature 418, 387 (2002)CrossRefGoogle Scholar
  19. A. Groisman, C. Lobo, H. Cho, J.K. Campbell, Y.S. Dufour, A.M. Stevens, A. Levchenko, Nat Methods 2, 685 (2005)CrossRefGoogle Scholar
  20. A. Humphrey, Biotechnol Prog 14, 3 (2008)CrossRefGoogle Scholar
  21. M.J. Jebrail, A.R. Wheeler, Anal Chem 81, 330 (2009)CrossRefGoogle Scholar
  22. M. J. Jebrail, V. N. Luk, S. C. C. Shih, R. Fobel, A. H. Ng, H. Yang, S. L. Freire, A. R. Wheeler, J Vis Exp. (2009). doi: 10.3791/1603
  23. J.S. Kee, D.P. Poenar, P. Neuzil, L. Yobas, Sens and Act. B 134, 532 (2008)CrossRefGoogle Scholar
  24. E.V. Koonin, M.Y. Galperin, Curr Opin Genet Dev 7, 757 (1997)CrossRefGoogle Scholar
  25. B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Anal Chem 76, 1571 (2004)CrossRefGoogle Scholar
  26. H.L. Lee, P. Boccazzi, R.J. Ram, A.J. Sinskey, Lab Chip 6, 1229 (2006)CrossRefGoogle Scholar
  27. Z. Liang, N. Chiem, G. Ocvirk, T. Tang, K. Fluri, D.J. Harrison, Anal Chem 68, 1040 (1996)CrossRefGoogle Scholar
  28. A. Llobera, S. Demming, R. Wilke, S. Buttgenbach, Lab Chip 7, 1560 (2007)CrossRefGoogle Scholar
  29. H.W. Lu, F. Bottausci, J.D. Fowler, A.L. Bertozzi, C. Meinhart, C.J. Kim, Lab Chip 8, 456 (2008)CrossRefGoogle Scholar
  30. V.N. Luk, G. Mo, A.R. Wheeler, Langmuir 24, 6382 (2008)CrossRefGoogle Scholar
  31. V.N. Luk, A.R. Wheeler, Anal Chem 81, 4524 (2009)CrossRefGoogle Scholar
  32. M. Mandel, A. Higa, J Mol Biol 53, 159 (1970)CrossRefGoogle Scholar
  33. E.M. Miller, A.R. Wheeler, Anal Chem 80, 1614 (2008)CrossRefGoogle Scholar
  34. D.J.S. Montagnes, D.J. Franklin, Limnol. Oceangr. 46, 2008 (2001)CrossRefGoogle Scholar
  35. H. Moon, A.R. Wheeler, R.L. Garrell, J.A. Loo, C.J. Kim, Lab Chip 6, 1213 (2006)CrossRefGoogle Scholar
  36. N. A. Mousa, M. J. Jebrail, H. Yang, M. Abdelgawad, P. Metalnikov, J. Chen, A. R. Wheeler, R. F. Casper, Sci Transl Med. 1, 1ra2 (2009)Google Scholar
  37. P. Paik, V.K. Pamula, R.B. Fair, Lab Chip 3, 253 (2003a)CrossRefGoogle Scholar
  38. P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair, Lab Chip 3, 28 (2003b)CrossRefGoogle Scholar
  39. X.Y. Peng, P.C.H. Li, Anal Chem 76, 5282 (2004)CrossRefGoogle Scholar
  40. J. Piškur, R.B. Langkjær, Mol Microbiol 53, 381 (2004)CrossRefGoogle Scholar
  41. D.A. Ratkowsky, J. Olley, T.A. McMeekin, A. Ball, J Bacteriol 149, 1 (1982)Google Scholar
  42. J. Ryley, O.M. Pereira-Smith, Yeast 23, 1065 (2006)CrossRefGoogle Scholar
  43. G.J. Shah, A.T. Ohta, E.P. Chiou, M.C. Wu, C.J. Kim, Lab Chip 9, 1732 (2009)CrossRefGoogle Scholar
  44. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Lab Chip 8, 2091 (2008a)CrossRefGoogle Scholar
  45. R.S. Sista, A.E. Eckhardt, V. Srinivasan, M.G. Pollack, S. Palanki, V.K. Pamula, Lab Chip 8, 2188 (2008b)CrossRefGoogle Scholar
  46. S. Son, R. Garrell, Lab Chip 9, 2398 (2009)CrossRefGoogle Scholar
  47. V. Srinivasan, V.K. Pamula, R.B. Fair, Anal Chim Acta 507, 145 (2004a)CrossRefGoogle Scholar
  48. V. Srinivasan, V.K. Pamula, R.B. Fair, Lab Chip 4, 310 (2004b)CrossRefGoogle Scholar
  49. J.R. Swartz, Curr Opin Biotechnol 12, 195 (2001)CrossRefGoogle Scholar
  50. M.D. Vahey, J. Voldman, Anal Chem 80, 3135 (2008)CrossRefGoogle Scholar
  51. E. Verpoorte, A. Manz, H. Ludi, A.E. Bruno, F. Maystre, B. Krattiger, H.M. Widmer, B.H. van der Schoot, N.F. de Roojj, Sens and Act B. 6, 66 (1992)CrossRefGoogle Scholar
  52. I. Walther, B.v d Schootb, M. Boillatb, A. Cogoli, Enzyme Microb Technol 27, 778 (2000)CrossRefGoogle Scholar
  53. M.W. Watson, M.J. Jebrail, A.R. Wheeler, Anal Chem 82, 6680 (2010)CrossRefGoogle Scholar
  54. A.R. Wheeler, H. Moon, C.A. Bird, R.R.O. Loo, C.J. Kim, J.A. Loo, R.L. Garrell, Anal Chem 77, 534 (2005)CrossRefGoogle Scholar
  55. A.R. Wheeler, Science 322, 539 (2008)CrossRefGoogle Scholar
  56. E. Yu, F. Zendejas, P. Lane, S. Gaucher, B. Simmons, T. Lane, Jour App. Phycol. (2009). doi:  10.1007/s10811-008-9400-y
  57. Z. Zhang, P. Boccazzi, H.G. Choi, G. Perozziello, A.J. Sinskey, K.F. Jensen, Lab Chip 6, 906 (2006)CrossRefGoogle Scholar
  58. J. Ziauddin, D.M. Sabatini, Nature 411, 107 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sam H. Au
    • 1
    • 2
  • Steve C. C. Shih
    • 1
    • 2
  • Aaron R. Wheeler
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  2. 2.Donnelly Centre for Cellular and Biomolecular ResearchTorontoCanada
  3. 3.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations