Biomedical Microdevices

, Volume 12, Issue 5, pp 821–832 | Cite as

Weak solvent based chip lamination and characterization of on-chip valve and pump

  • Peng ZhouEmail author
  • Lincoln Young
  • Zongyuan Chen


Using polystyrene as a fabrication material and pure acetonitrile as a bonding solvent, we have developed an innovative and inexpensive weak-solvent-based chip lamination process to produce highly functional, completely plastic, microfluidic chips with a 3-layer structure. This simple, scalable and rapid method allows active components, such as multiple valves and pumps, to be constructed on chip with a thin, deflectable film as the middle layer sandwiched between two polystyrene layers. Our irreversible bonding method achieves uniform lamination under mild conditions (35–45°C and 10–50 KPa) without damage to the underlying micro-features. The on-chip valve and pump structures have been systematically characterized and the pumping rate has been compared against theoretical rates predicted by mathematical modeling studies. A wide range of pumping rates (0.33–10 μL/s) can be achieved, with the integral pumps maintaining a constant pumping rate and depending on pumping frequency and pump diaphragm size. Valve leakage of less than 0.02 μL/min is noted under pressures of 41 kPa. Utilizing various configurations of on-chip valves and pumps, the fully automated flow control of an integrated chip for sample lysis, nucleic acid purification and PCR is demonstrated. The present technology and chip have been heavily evaluated internally and externally for rapid biomedical diagnosis of HPV, HIV, etc., and they are currently in the process of commercialization.


Weak solvent Plastic lamination Valve and pump Microfluidics Lab-on-a-chip Pneumatic 



We wish to thank Dr. Richard Montagna for his editorial assistance and helpful discussions. The Rheonix engineering group is gratefully acknowledged for its support in all aspects of chip fabrication.

Supplementary material

10544_2010_9436_MOESM1_ESM.doc (831 kb)
Esm 1 (DOC 831 kb)

(MPG 364 kb)


(MPG 4520 kb)


(MPG 1692 kb)


(MPG 2046 kb)


  1. A. Baldi, Y.D. Gu, P.E. Loftness, R.A. Siegel, B. Ziaie, J Microelectromech Syst 12, 613 (2003)CrossRefGoogle Scholar
  2. H.H. Bau, J. Zhu, S. Qian, Y. Xiang, Sensor Actuator B 88, 205 (2003)CrossRefGoogle Scholar
  3. L. Brown, T. Koerner, J.H. Horton, R.D. Oleschuk, Lab Chip 6, 66 (2006)CrossRefGoogle Scholar
  4. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Nature 404, 588 (2000)CrossRefGoogle Scholar
  5. A. Brask, J.P. Kutter, H. Bruus, Lab Chip 5, 730 (2005)CrossRefGoogle Scholar
  6. K.K. Chee, Malaysian J Chem 7, 57 (2005)Google Scholar
  7. Z. Chen, M.G. Mauk, J. Wang, W.R. Abrams, P. Corstjens, R.S. Niedbala, D. Malamud, H.H. Bau, Ann. NY Acad. Sci. 1098, 429 (2007)CrossRefGoogle Scholar
  8. Z. Chen, J. Wang, S. Qian, H.H. Bau, Lab Chip 5, 1277 (2005)CrossRefGoogle Scholar
  9. J.S. Go, S. Shoji, Sensor Actuator A 114, 438 (2004)CrossRefGoogle Scholar
  10. D.W. Green, R.H. Perry, Perry's chemical engineers' handbook, 8th edn. (McGraw-Hill, New York, 2008)Google Scholar
  11. W.H. Grover, A.M. Skelley, C.N. Liu, E.T. Lagally, R.A. Mathies, Sensor Actuator B 89, 315 (2003)CrossRefGoogle Scholar
  12. W. Gu, H. Chen, Y.C. Tung, J.C. Meiners, S. Takayama, Applied Physics Letters 90, 033505 (2007)CrossRefGoogle Scholar
  13. A. Hatch, E. Kamholz, G. Holman, P. Yager, K. Bohringer, J Microelectromech Syst 10, 215 (2001)CrossRefGoogle Scholar
  14. Y. He, Y.H. Zhang, E.S. Yeung, J. Chromatogr. A 924, 271 (2001)CrossRefGoogle Scholar
  15. H.B. Hopfenberg, L. Nicolais, E. Drioli, Polymer 17, 195 (1976)CrossRefGoogle Scholar
  16. Z. Hua, R. Pal, O. Srivannavit, M.A. Burns, E. Gulari, Lab Chip 8, 488 (2008)CrossRefGoogle Scholar
  17. V. Lemoff, A.P. Lee, Sensor Actuator B 63, 178 (2000)CrossRefGoogle Scholar
  18. R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal. Chem. 76, 1824 (2004a)CrossRefGoogle Scholar
  19. R.H. Liu, J. Bonanno, J.N. Yang, R. Lenigk, P. Grodzinski, Sensor Actuator B 98, 328 (2004b)CrossRefGoogle Scholar
  20. Q. Luo, S. Mutlu, Y.B. Gianchandani, F. Svec, J.M.J. Fréchet, Electrophoresis 24, 3694 (2003)CrossRefGoogle Scholar
  21. D.A. Mair, M. Rolandi, M. Snauko, R. Noroski, F. Svec, J.M.J. Fréchet, Anal. Chem. 79, 5097 (2007)CrossRefGoogle Scholar
  22. L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan, Anal. Chem. 69, 4783 (1997)CrossRefGoogle Scholar
  23. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)CrossRefGoogle Scholar
  24. S.H. Ng, R.T. Tjeung, Z.F. Wang, A.C.W. Lu, I. Rodriguez, N.F. de Rooij, Microsyst. Technol. 14, 753 (2008)CrossRefGoogle Scholar
  25. R. Pal, M. Yang, B.N. Johnson, D.T. Burke, M.A. Burns, Anal. Chem. 76, 3740 (2004)CrossRefGoogle Scholar
  26. J. Pipper, M. Inoue, L.F. Ng, P. Neuzil, Y. Zhang, L. Novak, Nat. Med. 13, 1259 (2007)CrossRefGoogle Scholar
  27. J.J. Shah, J. Geist, L.E. Locascio, M. Gaitan, M.V. Rao, W.N. Vreeland, Anal. Chem. 78, 3348 (2006)CrossRefGoogle Scholar
  28. H. Shinohara, T. Suzuki, F. Kitagawa, J. Mizuno, K. Otsuka, S. Shoji, Sensor Actuator B 132, 368 (2008)CrossRefGoogle Scholar
  29. J. Steigert, S. Haeberle, T. Brenner, C. Müller, C.P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Rühe, R. Zengerle, J. Ducrée, J. Micromech. Microeng. 17, 333 (2007)CrossRefGoogle Scholar
  30. C.W. Tsao, L. Hromada, J. Liu, P. Kumar, D.L. DeVoe, Lab Chip 7, 499 (2007)CrossRefGoogle Scholar
  31. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)CrossRefGoogle Scholar
  32. T.I. Wallow, A.M. Morales, B.A. Simmons, M.C. Hunter, K.L. Krafcik, L.A. Domeier, S.M. Sickafoose, K.D. Patel, A. Gardea, Lab Chip 7, 1825 (2007)CrossRefGoogle Scholar
  33. J. Wang, Z. Chen, M.G. Mauk, K. Hong, M. Li, S. Yang, H.H. Bau, Biomed. Microdevices 7, 313 (2005)CrossRefGoogle Scholar
  34. G.M. Whitesides, Nature 442, 368 (2006)CrossRefGoogle Scholar
  35. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 413 (2006)CrossRefGoogle Scholar
  36. L.C. Young, P. Zhou, United States Patent Application 20060076068, April 13, 2006.Google Scholar
  37. S. Zeng, C.H. Chen, J.C. Mikkelsen, J.G. Santiago, Sensor Actuator B 79, 107 (2001)CrossRefGoogle Scholar
  38. P. Zhou, L.C. Young, United States Patent 7,608,160, October 27, 2009.Google Scholar
  39. Z. Zou, J. Kai, M.J. Rust, J. Han, C.H. Ahn, Sensor Actuator A 136, 518 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Rheonix, Inc.IthacaUSA

Personalised recommendations