Biomedical Microdevices

, Volume 12, Issue 3, pp 543–553 | Cite as

A microfluidic imaging chamber for the direct observation of chemotactic transmigration

  • Mark T. Breckenridge
  • Thomas T. Egelhoff
  • Harihara BaskaranEmail author


To study the roles of nonmuscle myosin II (NM-II) during invasive cell migration, microfluidic migration chambers have been designed and fabricated using photo- and soft-lithography microfabrication techniques. The chamber consists of two channels separated by a vertical barrier with multiple bays of pores with widths varying from 6 µm to 16 µm, and lengths varying from 25 µm to 50 µm. The cells are plated in the channel on one side of the barrier while a chemoattractant is flowed through the channel on the other side of the barrier. In these chambers, cells can be observed with transmitted light or fluorescence optics while they chemotax through various sized pores that impose differential mechanical resistance to transmigration. As an initial test of this device, we compared breast-cancer cell chemotactic transmigration through different pore sizes with and without inhibition of NM-II. Two distinct rates were observed as cells attempted to pull their nucleus through the smaller pores, and the faster nuclear transit mode was critically dependent on NM-II motor activity. The ability to monitor cells as they chemotax through pores of different dimensions within a single experimental system provides novel information on how pore size affects cell morphology and migration rate, providing a dramatic improvement of imaging potential relative to other in vitro transmigration systems such as Boyden chambers.


Chemotaxis Transmigration Nonmuscle myosin II 



The authors thank Wan-Hsiang Liang for help with SEM. The research is supported by a NIH grant (EB006203) to H. Baskaran and a NIH grant (GM077224) to T. Egelhoff.

Supplementary material

10544_2010_9411_MOESM1_ESM.mpg (3.4 mb)
Online Resource 1 Three ‘fast’ cells can be seen migrating towards and through a 50 × 6 μm pore (0–4 s). A ‘slow’ cell can be seen extending its leading edge towards the pore starting at ∼3 s, and migrating through the pore between seconds 5–8. Movie displayed at 20 frames sec-1, made from 17 h timelapse experiment, images taken every 5 min (MPG 3468 kb)


  1. V.V. Abhyankar, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6, 389–393 (2006)CrossRefGoogle Scholar
  2. J. Atencia, J. Morrow, L.E. Locascio, The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9, 2707–2714 (2009)CrossRefGoogle Scholar
  3. C. Beadle, M.C. Assanah, P. Monzo, R. Vallee, S.S. Rosenfeld, P. Canoll, The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)CrossRefGoogle Scholar
  4. H.C. Berg, E.M. Purcell, Physics of chemoreception. Biophys. J. 20, 193–219 (1977)CrossRefGoogle Scholar
  5. C. Beta, T. Frohlich, H.U. Bodeker, E. Bodenschatz, Chemotaxis in microfluidic devices—a study of flow effects. Lab Chip 8, 1087–1096 (2008)CrossRefGoogle Scholar
  6. W. Bialek, S. Setayeshgar, Physical limits to biochemical signaling. Proc. Natl Acad. Sci. USA 102, 10040–10045 (2005)CrossRefGoogle Scholar
  7. R.B. Bird, W.E. Stewart, E.N. Lightfoot. Transport Phenomena. (Wiley, 2006)Google Scholar
  8. S. Bulotta, M.V. Ierardi, J. Maiuolo, M.G. Cattaneo, A. Cerullo, L.M. Vicentini, N. Borgese, Basal nitric oxide release attenuates cell migration of HeLa and endothelial cells. Biochem. Biophys. Res. Commun. 386, 744–749 (2009)CrossRefGoogle Scholar
  9. Y. Cai, N. Biais, G. Giannone, M. Tanase, G. Jiang, J.M. Hofman, C.H. Wiggins, P. Silberzan, A. Buguin, B. Ladoux, M.P. Sheetz, Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J. 91, 3907–3920 (2006)CrossRefGoogle Scholar
  10. S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M. Wu, A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip. 7, 763–769 (2007)CrossRefGoogle Scholar
  11. J. Condeelis, J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006)CrossRefGoogle Scholar
  12. S. Even-Ram, A.D. Doyle, M.A. Conti, K. Matsumoto, R.S. Adelstein, K.M. Yamada, Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nat. Cell Biol. 9, 299–309 (2007)CrossRefGoogle Scholar
  13. C.W. Frevert, G. Boggy, T.M. Keenan, A. Folch, Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve. Lab Chip 6, 849–856 (2006)CrossRefGoogle Scholar
  14. P. Friedl, Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004)CrossRefGoogle Scholar
  15. C.G. Galbraith, M.P. Sheetz, Keratocytes pull with similar forces on their dorsal and ventral surfaces. J. Cell Biol. 147, 1313–1324 (1999)CrossRefGoogle Scholar
  16. S. Hu, J. Chen, J.P. Butler, N. Wang, Prestress mediates force propagation into the nucleus. Biochem. Biophys. Res. Commun. 329, 423–428 (2005)CrossRefGoogle Scholar
  17. D. Irimia, D.A. Geba, M. Toner, Universal microfluidic gradient generator. Anal. Chem. 78, 3472–3477 (2006)CrossRefGoogle Scholar
  18. D. Irimia, G. Charras, N. Agrawal, T. Mitchison, M. Toner, Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip. 7, 1783–1790 (2007)CrossRefGoogle Scholar
  19. N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, G.M. Whitesides, Generation of solution and surface gradients using microfluidic systems. Langmuir 16, 8311–8316 (2000)CrossRefGoogle Scholar
  20. T. Lammermann, M. Sixt, Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009)CrossRefGoogle Scholar
  21. T. Lammermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Forster, D.R. Critchley, R. Fassler, M. Sixt, Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)CrossRefGoogle Scholar
  22. Z.H. Li, A.R. Bresnick, The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res. 66, 5173–5180 (2006)CrossRefGoogle Scholar
  23. J.N. Li, H. Baskaran, S.K. Dertinger, G.M. Whitesides, L. Van de Water, M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat.Biotechnol. 20, 826–830 (2002)CrossRefGoogle Scholar
  24. Z. Liu, L.A. van Grunsven, E. Van Rossen, B. Schroyen, J.P. Timmermans, A. Geerts, H. Reynaert, Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells (Br. J, Pharmacol, 2009)Google Scholar
  25. C.M. Lo, D.B. Buxton, G.C. Chua, M. Dembo, R.S. Adelstein, Y.L. Wang, Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15, 982–989 (2004)CrossRefGoogle Scholar
  26. Y. Mishima, M. Lotz, Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J. Orthop. Res. 26, 1407–1412 (2008)CrossRefGoogle Scholar
  27. G. Ofek, R.M. Natoli, K.A. Athanasiou, In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech. 42, 873–877 (2009)CrossRefGoogle Scholar
  28. Z. Pan, K. Ghosh, Y. Liu, R.A. Clark, M.H. Rafailovich, Traction stresses and translational distortion of the nucleus during fibroblast migration on a physiologically relevant ECM mimic. Biophys. J. 96, 4286–4298 (2009)CrossRefGoogle Scholar
  29. K. Pankova, D. Rosel, M. Novotny, J. Brabek, The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells (Cell Mol, Life Sci, 2009)Google Scholar
  30. A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons, A.R. Horwitz, Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)CrossRefGoogle Scholar
  31. R.G. Rowe, S.J. Weiss, Breaching the basement membrane: who, when and how? Trends Cell Biol 18, 560–574 (2008)CrossRefGoogle Scholar
  32. W. Saadi, S.J. Wang, F. Lin, N.L. Jeon, A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed. Microdevices 8, 109–118 (2006)CrossRefGoogle Scholar
  33. W. Saadi, S.W. Rhee, F. Lin, B. Vahidi, B.G. Chung, N.L. Jeon, Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9, 627–635 (2007)CrossRefGoogle Scholar
  34. B.T. Schaar, S.K. McConnell, Cytoskeletal coordination during neuronal migration. Proc. Natl Acad. Sci. USA 102, 13652–13657 (2005)CrossRefGoogle Scholar
  35. L.M. Shaw, Tumor cell invasion assays. Methods Mol. Biol. 294, 97–105 (2005)Google Scholar
  36. D.R. Sherwood, Cell invasion through basement membranes: an anchor of understanding. Trends Cell Biol. 16, 250–256 (2006)CrossRefGoogle Scholar
  37. G.M. Walker, J. Sai, A. Richmond, M. Stremler, C.Y. Chung, J.P. Wikswo, Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5, 611–618 (2005)CrossRefGoogle Scholar
  38. K. Wolf, R. Muller, S. Borgmann, E.B. Brocker, P. Friedl, Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003)CrossRefGoogle Scholar
  39. A.P. Wong, R. Perez-Castillejos, L.J. Christopher, G.M. Whitesides, Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments. Biomaterials 29, 1853–1861 (2008)CrossRefGoogle Scholar
  40. H. Wu, B. Huang, R.N. Zare, Generation of complex, static solution gradients in microfluidic channels. J. Am. Chem. Soc. 128, 4194–4195 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mark T. Breckenridge
    • 2
    • 3
  • Thomas T. Egelhoff
    • 3
  • Harihara Baskaran
    • 1
    Email author
  1. 1.Department of Chemical EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Physiology and BiophysicsCase Western Reserve University School of MedicineClevelandUSA
  3. 3.Department of Cell BiologyCleveland Clinic FoundationClevelandUSA

Personalised recommendations