Biomedical Microdevices

, Volume 12, Issue 3, pp 443–455 | Cite as

Measurement of single-cell adhesion strength using a microfluidic assay

  • Kevin V. Christ
  • Kyle B. Williamson
  • Kristyn S. Masters
  • Kevin T. Turner
Article

Abstract

Despite the importance of cell adhesion in numerous physiological, pathological, and biomaterial-related responses, our understanding of adhesion strength at the cell-substrate interface and its relationship to cell function remains incomplete. One reason for this deficit is a lack of accessible experimental approaches that quantify adhesion strength at the single-cell level and facilitate large numbers of tests. The current work describes the design, fabrication, and use of a microfluidic-based method for single-cell adhesion strength measurements. By applying a monotonically increasing flow rate in a microfluidic channel in combination with video microscopy, the adhesion strength of individual NIH3T3 fibroblasts cultured for 24 h on various surfaces was measured. The small height of the channel allows high shear stresses to be generated under laminar conditions, allowing strength measurements on well-spread, strongly adhered cells that cannot be characterized in most conventional assays. This assay was used to quantify the relationship between morphological characteristics and adhesion strength for individual well-spread cells. Cell adhesion strength was found to be positively correlated with both cell area and circularity. Computational fluid dynamics (CFD) analysis was performed to examine the role of cell geometry in determining the actual stress applied to the cell. Use of this method to examine adhesion at the single-cell level allows the detachment of strongly-adhered cells under a highly-controllable, uniform loading to be directly observed and will enable the characterization of biological events and relationships that cannot currently be achieved using existing methods.

Keywords

Cell adhesion Cell mechanics Shear flow Microfluidics 

References

  1. K. Anselme, Biomaterials 21, 667 (2000)CrossRefGoogle Scholar
  2. T. Bayraktar, S.B. Pidugu, Int. J. Heat Mass Transfer 49, 815 (2006)CrossRefGoogle Scholar
  3. A. Bershadsky, M. Kozlov, B. Geiger, Curr. Opin. Cell Biol. 18, 472 (2006)CrossRefGoogle Scholar
  4. C. Brakebusch, D. Bouvard, F. Stanchi, T. Saki, R. Fässler, J. Clin. Invest. 109, 999 (2002)Google Scholar
  5. Y.A. Çengel, J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications (McGraw-Hill, Boston, 2006)Google Scholar
  6. K.V. Christ, K.T. Turner, J. Adhes. Sci. Technol., in press (2010)Google Scholar
  7. E.H.J. Danen, A. Sonnenberg, J. Pathol. 200, 471 (2003)CrossRefGoogle Scholar
  8. P.F. Davies, A. Robotewskyj, M.L. Griem, J. Clin. Invest. 93, 2031 (1994)CrossRefGoogle Scholar
  9. E. Decave, D. Garrivier, Y. Brechet, F. Bruckert, B. Fourcade, Phys. Rev. Lett. 89, 108101 (2002)CrossRefGoogle Scholar
  10. M. Frost, M.E. Meyerhoff, Anal. Chem. 78, 7370 (2006)CrossRefGoogle Scholar
  11. N.D. Gallant, K.E. Michael, A.J. Garcia, Mol. Biol. Cell 16, 4329 (2005)CrossRefGoogle Scholar
  12. A.J. Garcia, N.D. Gallant, Cell Biochem. Biophys. 39, 61 (2003)CrossRefGoogle Scholar
  13. A.J. Garcia, P. Ducheyne, D. Boettiger, Biomaterials 18, 1091 (1997)CrossRefGoogle Scholar
  14. D.P. Gaver, S.M. Kute, Biophys. J. 75, 721 (1998)CrossRefGoogle Scholar
  15. T. Gervais, J. El-Ali, A. Gunther, K.F. Jensen, Lab Chip 6, 500 (2006)CrossRefGoogle Scholar
  16. A.S. Goldstein, P.A. DiMilla, AIChE Journal 44, 465 (1998)CrossRefGoogle Scholar
  17. A.S. Goldstein, P.A. DiMilla, J. Biomed. Mater. Res. Part A 67A, 658 (2003)CrossRefGoogle Scholar
  18. A.C.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y.W. Li, M.J. Cima, R. Langer, Proceedings of the IEEE 92, 6 (2004)CrossRefGoogle Scholar
  19. M.A. Griffin, A.J. Engler, T.A. Barber, K.E. Healy, H.L. Sweeney, D.E. Discher, Biophys. J. 86, 1209 (2004)CrossRefGoogle Scholar
  20. L.G. Griffith, G. Naughton, Science 295, 1009 (2002)CrossRefGoogle Scholar
  21. E. Gutierrez, A. Groisman, Anal. Chem. 79, 2249 (2007)CrossRefGoogle Scholar
  22. P.F. Hao, Z.H. Yao, F. He, K.Q. Zhu, J. Micromech. Microeng. 16, 1397 (2006)CrossRefGoogle Scholar
  23. J.P. Hartnett, M. Kostic, Heat transfer to newtonian and non-newtonian fluids in rectangular ducts, in Advances in Heat Transfer, ed. by J.P. Hartnett, T.F. Irvine Jr. (Academic Press, San Diego, 1989), p. 247Google Scholar
  24. M.A. Holden, S. Kumar, A. Beskok, P.S. Cremer, J. Micromech. Microeng. 13, 412 (2003)CrossRefGoogle Scholar
  25. S. Huang, D.E. Ingber, Nat. Cell Biol. 1, E131 (1999)CrossRefGoogle Scholar
  26. W. Huang, B. Anvari, J.H. Torres, R.G. LeBaron, K.A. Athanasiou, J. Orthop. Res. 21, 88 (2003)CrossRefGoogle Scholar
  27. W.A. Hyman, J. Biomech. 5, 45 (1972)CrossRefGoogle Scholar
  28. M.V. King, Cell Biophys. 18, 31 (1991)Google Scholar
  29. L.Y. Koo, D.J. Irvine, A.M. Mayes, D.A. Lauffenburger, L.G. Griffith, J. Cell Sci. 115, 1423 (2002)Google Scholar
  30. D.A. Lauffenburger, A.F. Horwitz, Cell 84, 359 (1996)CrossRefGoogle Scholar
  31. H. Lu, L.Y. Koo, W.C.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal. Chem. 76, 5257 (2004)CrossRefGoogle Scholar
  32. J.A. McCann, S.D. Peterson, M.W. Plesniak, T.J. Webster, K.M. Haberstroh, Ann. Biomed. Eng. 33, 328 (2005)CrossRefGoogle Scholar
  33. R.P. McEver, Thromb. Haemost. 86, 746 (2001)Google Scholar
  34. L.A. Olivier, G.A. Truskey, Biotechnol. Bioeng. 42, 963 (1993)CrossRefGoogle Scholar
  35. E.A. Osborn, A. Rabodzey, C.F. Dewey, J.H. Hartwig, Am. J. Physiol. Cell Physiol. 290, C444 (2006)CrossRefGoogle Scholar
  36. C. Pozrikidis, Comput. Fluids 29, 617 (2000)MATHCrossRefGoogle Scholar
  37. T.W. Qin, Z.M. Yang, Z.Z. Wu, H.Q. Xie, H. Qin, S.X. Cai, Biomaterials 26, 6635 (2005)CrossRefGoogle Scholar
  38. C.M. Revell, J.A. Dietrich, C.C. Scott, A. Luttge, L.S. Baggett, K.A. Athanasiou, Matrix Biol. 25, 523 (2006)CrossRefGoogle Scholar
  39. C.D. Reyes, A.J. Garcia, J. Biomed. Mater. Res. Part A 67A, 328 (2003)CrossRefGoogle Scholar
  40. P. Roca-Cusachs, F. Rico, E. Martinez, J. Toset, R. Farre, D. Navajas, Langmuir 21, 5542 (2005)CrossRefGoogle Scholar
  41. G. Sagvolden, I. Giaever, E.O. Pettersen, J. Feder, Proc. Natl Acad. Sci. USA 96, 471 (1999)CrossRefGoogle Scholar
  42. K.L.P. Sung, M.K. Kwan, F. Maldonado, W.H. Akeson, J. Biomech. Eng. 116, 237 (1994)CrossRefGoogle Scholar
  43. G.A. Truskey, J.S. Pirone, J. Biomed. Mater. Res. 24, 1333 (1990)CrossRefGoogle Scholar
  44. G.A. Truskey, T.L. Proulx, Biomaterials 14, 243 (1993)CrossRefGoogle Scholar
  45. T.G. van Kooten, J.M. Schakenraad, H.C. Vandermei, H.J. Busscher, Biomaterials 13, 897 (1992)CrossRefGoogle Scholar
  46. S. Wiesner, K.R. Legate, R. Fässler, Cell. Mol. Life Sci. 62, 1081 (2005)CrossRefGoogle Scholar
  47. Y.N. Xia, G.M. Whitesides, Angew. Chem. Int. Edit. 37, 551 (1998)Google Scholar
  48. A. Yamamoto, S. Mishima, N. Maruyama, M. Sumita, J. Biomed. Mater. Res. 50, 114 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kevin V. Christ
    • 1
  • Kyle B. Williamson
    • 2
  • Kristyn S. Masters
    • 1
    • 2
  • Kevin T. Turner
    • 1
    • 2
    • 3
  1. 1.Materials Science ProgramUniversity of WisconsinMadisonUSA
  2. 2.Department of Biomedical EngineeringUniversity of WisconsinMadisonUSA
  3. 3.Department of Mechanical EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations