Biomedical Microdevices

, Volume 12, Issue 3, pp 409–417

Microfluidic perifusion and imaging device for multi-parametric islet function assessment

  • Adeola F. Adewola
  • Dongyoung Lee
  • Tricia Harvat
  • Javeed Mohammed
  • David T. Eddington
  • Jose Oberholzer
  • Yong Wang
Article

Abstract

A microfluidic islet perifusion device was developed for the assessment of dynamic insulin secretion of multiple pancreatic islets and simultaneous fluorescence imaging of calcium influx and mitochondrial potential changes. The fanned out design of the second generation device optimized the efficient mixing and uniform distribution of rapid alternating solutions in the perifusion chamber and allowed for the generation of reproducible glucose gradients. Simultaneous imaging of calcium influx and mitochondrial potential changes in response to glucose stimulation showed high signal-noise ratio and spatial-temporal resolution. These results suggest that this system can be used for detailed study of the endocrine function of pancreatic islets with simultaneous imaging of intracellular ion fluxes and mitochondrial membrane potential changes. This tool can be used for quality assessment of islets preparation before transplantation and for in vitro studies of islet function.

Keywords

Islets physiology Imaging Glucose gradient Microfluidics 

References

  1. J. Atencia, J. Morrow et al., Lab Chip 9, 18 (2009)CrossRefGoogle Scholar
  2. J.G. Avila, Y. Wang et al., Am J Transplant 6, 12 (2006)CrossRefGoogle Scholar
  3. O. Cabrera, M.C. Jacques-Silva et al., Cell Transplant 16, 10 (2008)Google Scholar
  4. D. Chen, W. Du et al., Proc Natl Acad Sci U S A 105, 44 (2008)CrossRefGoogle Scholar
  5. Y. Du, J. Shim et al., Lab Chip 9, 6 (2009)Google Scholar
  6. B. Gimi, L. Leoni et al., Cell Transplant 15, 2 (2006)CrossRefGoogle Scholar
  7. C. Hansen, S.R. Quake, Curr Opin Struct Biol 13, 5 (2003)CrossRefGoogle Scholar
  8. J.M. Higgins, D.T. Eddington et al., Proc Natl Acad Sci U S A 104, 51 (2007)Google Scholar
  9. W.W. Liu, J. Goodhouse et al., PLoS One 3, 6 (2008)Google Scholar
  10. S. Maheswaran, L.V. Sequist et al., N Engl J Med 359, 4 (2008)CrossRefGoogle Scholar
  11. J.S. Mohammed, Y. Wang et al., Lab Chip 9, 1 (2009)CrossRefGoogle Scholar
  12. B. Mosadegh, C. Huang et al., Langmuir 23, 22 (2007)CrossRefGoogle Scholar
  13. J.V. Rocheleau, G.M. Walker et al., Proc Natl Acad Sci U S A 101, 35 (2004)CrossRefGoogle Scholar
  14. M.G. Roper, J.G. Shackman et al., Anal Chem 75, 18 (2003)CrossRefGoogle Scholar
  15. I.R. Sweet, D.L. Cook et al., Diabetes Technol Ther 4, 1 (2002)CrossRefGoogle Scholar
  16. A.M. Taylor, S.W. Rhee, et al. Methods Mol. Biol. 321 (2006)Google Scholar
  17. Y.P. Zhou, J.C. Pena et al., Am J Physiol Endocrinol Metab 278, 2 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Adeola F. Adewola
    • 1
  • Dongyoung Lee
    • 1
  • Tricia Harvat
    • 1
  • Javeed Mohammed
    • 3
  • David T. Eddington
    • 2
  • Jose Oberholzer
    • 1
    • 2
  • Yong Wang
    • 1
  1. 1.Department of Transplant/SurgeryUniversity of IllinoisChicagoUSA
  2. 2.Department of BioengineeringUniversity of IllinoisChicagoUSA
  3. 3.Department of Biomedical TechnologyKing Saud UniversityRiyadh Kingdom of Saudi Arabia

Personalised recommendations