Advertisement

Biomedical Microdevices

, Volume 12, Issue 2, pp 317–324 | Cite as

Active and biomimetic nanofilters for selective protein separation

  • Swati Goyal
  • Young-tae Kim
  • Yan Li
  • Samir M. IqbalEmail author
Article

Abstract

Selective protein channels in cell and nuclear membranes act as gateways to control the passage of molecules across. The selectivity of these channels stems from attractive potentials of the binding sites in the transmembrane proteins. These channels can filter out small volume of solutions with high precision. Motivated from this phenomenon, we report biomimetic facilitated transport modality to selectively separate a target molecule from a mixture of molecules. The attractive potential is generated by specific antibodies immobilized inside 15 nm diameter polycarbonate nanochannels. Two proteins with similar physicochemical properties (Bovine Serum Albumin 66 kDa, and Human Hemoglobin 65 kDa) are chosen as model molecules. The protein molecules are mixed in ratios of 1:1, 1:20 and 1:40 (Hb:BSA), and separation of molecules is demonstrated. The selectivity of membrane can be switched from Hb to BSA by changing the immobilized antibody inside the membrane channels. This approach can be used to selectively enrich any target molecule from a complex sample to enhance signal-to-noise ratio for early disease diagnosis.

Keywords

Bio-separation technology Nanofiltration Nanochannels BSA Hb 

Notes

Acknowledgements

The authors thank Dr. S. M. Christensen for experimental assistance in quantifying concentrations of proteins, and Dr. Shan Sun-Mitchell for help with data analysis. Y-t. K. acknowledges support from the Nano-Bio Cluster Program at the University of Texas at Arlington. S. G. and S. M. I. acknowledge support from NSF CAREER grant ECCS-0845669.

References

  1. W.R. Bauer, W. Nadler, Proc. Natl. Acad. Sci. 103, 11446–11451 (2006)CrossRefGoogle Scholar
  2. N.V. Bhat, D.S. Wavhal, J. Appl. Polym. Sci. 76, 258–265 (2000)CrossRefGoogle Scholar
  3. C.T. Black, K.W. Guarini, G. Breyta, M.C. Colburn, R. Ruiz, R.L. Sandstrom, E.M. Sikorski, Y. Zhang, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24, 3188 (2006)CrossRefGoogle Scholar
  4. W.H. Chu, R. Chin, T. Huen, M. Ferrari, J. Microelectromech. Syst. 8(1), 34–42 (1999)CrossRefGoogle Scholar
  5. T.A. Desai, D. Hansford, M. Ferrari, J. Membr. Sci. 159(1–2), 221–231 (1999a)CrossRefGoogle Scholar
  6. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Biomed. Microdevices 2(1), 11–40 (1999b)CrossRefGoogle Scholar
  7. T.A. Desai, D.J. Hansford, L. Leoni, M. Essenpreis, M. Ferrari, Biosens. Bioelectron. 15(9–10), 453–462 (2000)CrossRefGoogle Scholar
  8. J. Fu, P. Mao, J. Han, Nat. Protoc. 4(11), 1681–1698 (2009)CrossRefGoogle Scholar
  9. S.M. Iqbal, D. Akin, R. Bashir, Nat. Nano. 2(4), 243–248 (2007)CrossRefGoogle Scholar
  10. K.B. Jirage, J.C. Hulteen, C.R. Martin, Science 278(5338), 655 (1997)CrossRefGoogle Scholar
  11. T. Jovanovic-Talisman, J. Tetenbaum-Novatt, A.S. McKenney, A. Zilman, R. Peters, M.P. Rout, B.T. Chait, Nature 457(7232), 1023–1027 (2009)CrossRefGoogle Scholar
  12. T.J. Kindt, B.A. Osborne, R.A. Goldsby, Antigen-Antibody interactions: Principles and applications in Kuby Immunology, W.H. Freeman Biology:145–146 (2006)Google Scholar
  13. P. Kohli, C.C. Harrell, Z. Cao, R. Gasparac, W. Tan, C.R. Martin, Science 305, 984–986 (2004)CrossRefGoogle Scholar
  14. J.R. Ku, P. Stroeve, Langmuir 20(5), 2030–2032 (2004)CrossRefGoogle Scholar
  15. S. Kuiper, C.J.M. Van Rijn, W. Nijdam, M.C. Elwenspoek, J. Membr. Sci. 150(1), 1–8 (1998)CrossRefGoogle Scholar
  16. M. Mulder, Basic Principles of Membrane Technology (Springer, 1996)Google Scholar
  17. M.R. Noor, S. Goyal, S.M. Christensen, S.M. Iqbal, Appl. Phys. Lett. 95(7), 073703 (2009)CrossRefGoogle Scholar
  18. E.N. Savariar, K. Krishnamoorthy, S. Thayumanavan, Nat. Nano. 3(2), 112 (2008)CrossRefGoogle Scholar
  19. C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Nature 445, 749 (2007)CrossRefGoogle Scholar
  20. H.D. Tong, H.V. Jansen, V.J. Gadgil, C.G. Bostan, E. Berenschot, C.J.M. van Rijn, M. Elwenspoek, Nano Lett. 4(2), 283–288 (2004)CrossRefGoogle Scholar
  21. Z. Wang, R.X. Li, Nanoscale Res. Lett. 2(2), 69–74 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Swati Goyal
    • 1
    • 2
  • Young-tae Kim
    • 1
    • 2
  • Yan Li
    • 3
  • Samir M. Iqbal
    • 2
    • 4
    Email author
  1. 1.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Nanotechnology Research and Teaching FacilityUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Department of MathematicsUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Department of Electrical Engineering, Joint Graduate Committee of Biomedical Engineering Program, University of Texas at Arlington and University of Texas Southwestern Medical Center at DallasUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations