Biomedical Microdevices

, Volume 12, Issue 1, pp 159–168 | Cite as

A low power, microvalve regulated architecture for drug delivery systems

  • Allan Thomas Evans
  • Jong M. Park
  • Srinivas Chiravuri
  • Yogesh B. Gianchandani


This paper describes an actively-controlled architecture for drug delivery systems that offers high performance and volume efficiency through the use of micromachined components. The system uses a controlled valve to regulate dosing by throttling flow from a mechanically pressurized reservoir, thereby eliminating the need for a pump. To this end, the valve is fabricated from a glass wafer and silicon-on-insulator wafer for sensor integration. The valve draws a maximum power of 1.68 µW (averaged over time); with the existing packaging scheme, it has a volume of 2.475 cm3. The reservoirs are assembled by compressing polyethylene terephthalate polymer balloons with metal springs. The metal springs are fabricated from Elgiloy® using photochemical etching. The springs pressurize the contents of 37 mL chambers up to 15 kPa. The system is integrated with batteries and a control circuit board within a 113 cm3 metal casing. This system has been evaluated in different control modes to mimic clinical applications. Bolus deliveries of 1.5 mL have been regulated as well as continuous flows of 0.15 mL/day with accuracies of 3.22%. The results suggest that this device can be used in an implant to regulate intrathecal drug delivery.


Drug delivery Intrathecal Microvalve Piezoelectric Flow control MEMS 


  1. V.C. Anderson, K.J. Burchiel, A prospective study of long-term intrathecal morphine in the management of chronic nonmalignant pain. Neurosurgery 44, 2 (1999)CrossRefGoogle Scholar
  2. American Society of Health System Pharmacists, ASHP guidelines on quality assurance for pharmacy-prepared sterile products. Am. J. Health Syst. Pharm. 57, 12 (2000)Google Scholar
  3. A. Baraka, Rostral spread of intrathecal morphine in man. Middle East J Anaesthesiol 6, 4 (1982)Google Scholar
  4. I. Chakraborty, W.C. Tang, D.P. Bame, T.K. Tang, MEMS micro-valve for space application. Sensors and Actuators A (Physical) 83, 1–3 (2000)CrossRefGoogle Scholar
  5. D.W. Coombs, N. Fine, Spinal anesthesia using subcutaneously implanted pumps for intrathecal drug infusion. Anesth. Analg. 73, 2 (1991)CrossRefGoogle Scholar
  6. J.S. Crawford, Site of action of intrathecal morphine. Br. Med. J. 281, 6248 (1980)Google Scholar
  7. T.R. Deer, D.L. Caraway, C.K. Kim, C.D. Dempsey, C.D. Stewart, K.F. McNeil, Clinical experience with intrathecal bupivacaine in combination with opioid for the treatment of chronic pain related to failed back surgery syndrome and metastatic cancer pain of the spine. Spine J. 2, 4 (2002)CrossRefGoogle Scholar
  8. T. Deer, I. Chapple, A. Classen, K. Javery, V. Stoker, L. Tonder, K. Burchiel, Intrathecal drug delivery for treatment of chronic low back pain: report from the national outcomes registry for low back pain. Pain Med. 5, 1 (2004)CrossRefGoogle Scholar
  9. Dubois, P., Guldimann, B., de Rooij, N.F.: High-speed electrostatic gas microvalve switching behavior. Proceedings of the SPIE–The International Society for Optical Engineering, 4560 (2001)Google Scholar
  10. M. Esashi, S. Shoji, A. Nakano, Normally closed microvalve and micropump fabricated on a silicon wafer. Sensors and Actuators 20, 1–2 (1989)CrossRefGoogle Scholar
  11. Evans, A.T., Park, J.M., Chiravuri, S., Gianchandani, Y.B.: Dual drug delivery device for chronic pain management using micromachined elastic metal structures and silicon microvalves, Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS), pp. 252–55 (2008)Google Scholar
  12. C. Fu, Z. Rummler, W. Schomburg, Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding. J. Micromech. Microeng. 13, 4 (2003)CrossRefGoogle Scholar
  13. T.S. Grabow, D. Derdzinski, P.S. Staats, Spinal drug delivery. Curr. Pain Headache Rep. 5, 6 (2001)CrossRefGoogle Scholar
  14. S.J. Hassenbusch, R.K. Portenoy, Current practices in intraspinal therapy—a survey of clinical trends and decision making. J. Pain Symptom Manag. 20, 2 (2000)CrossRefGoogle Scholar
  15. S.J. Hassenbusch, R.K. Portenoy, M. Cousins, E. Buchser, T.R. Deer, S.L. Du Pen, J. Eisenach, K.A. Follett, K.R. Hildebrand, E.S. Krames, R.M. Levy, P.P. Palmer, J.P. Rathmell, R.L. Rauck, P.S. Staats, L. Stearns, K.D. Willis, Polyanalgesic consensus conference 2003: an update on the management of pain by intraspinal drug delivery— report of an expert panel. J. Pain Symptom Manag. 27, 6 (2004)Google Scholar
  16. Joint Committee on Accrediation of Healthcare Organizations, New standards to assess and manage pain. Jt. Comm. Perspect. 19, 5 (1999)Google Scholar
  17. M. Kohl, D. Dittmann, E. Quandt, B. Winzek, Thin film shape memory microvalves with adjustable operation temperature. Sensors and Actuators A (Physical) 83, 1–3 (2000)CrossRefGoogle Scholar
  18. E.S. Krames, Practical issues when using neuraxial infusion. Oncology 13, 5 (1999)Google Scholar
  19. S. Mercadante, R.K. Portenoy, Opioid poorly-responsive cancer pain. J. Pain Symptom Manag. 21, 3 (2001)CrossRefGoogle Scholar
  20. S. Mercadante, P. Ferrera, P. Villari, E. Arcuri, Hyperalgesia: an emerging iatrogenic syndrome. J. Pain Symptom Manag. 26, 2 (2003)Google Scholar
  21. Messner, S., Muller, M., Burger, V., Schaible, J., Sandmaier, H., Zengerle, R.: A normally-closed, bimetallically actuated 3-way microvalve for pneumatic applications. Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS), pp. 40–44 (1998)Google Scholar
  22. J.A. Paice, R.D. Penn, S. Shott, Intraspinal morphine for chronic pain: a retrospective, multicenter study. J. Pain Symptom Manag. 11, 2 (1996)Google Scholar
  23. Park, J.M., Brosten, T.R., Evans, A.T., Rasmussen, K., Nellis, G.F., Klein, S.A., Feller, J.R., Salerno, L., Gianchandani, Y.B.: A piezoelectric microvalve with integrated sensors for cryogenic applications. Proceedings of the IEEE international conference on micro electro mechanical systems (MEMS), pp. 647–650 (2007)Google Scholar
  24. C.J. Phillips, Pain management: health economics and quality of life considerations. Drugs 63, 2 (2003)CrossRefGoogle Scholar
  25. N.G. Rainov, V. Heidecke, Management of chronic back and leg pain by intrathecal drug delivery. Acta. Neurochir. Suppl. 97, 1 (2007)Google Scholar
  26. R.L. Rauck, D. Cherry, M.F. Boyer, P. Kosek, J. Dunn, K. Alo, Long-term intrathecal opioid therapy with a patient-activated, implanted delivery system for the treatment of refractory cancer pain. J. Pain. 4, 8 (2003)CrossRefGoogle Scholar
  27. C.A. Rich, K.D. Wise, A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing. J. Microelectromech. Syst. 12, 2 (2003)CrossRefGoogle Scholar
  28. D.C. Roberts, L. Hanqing, J.L. Steyn, O. Yaglioglu, S.M. Spearing, M.A. Schmidt, N.W. Hagood, A piezoelectric microvalve for compact high-frequency, high-differential pressure hydraulic micropumping systems. J. Microelectromech. Syst. 12, 1 (2003)CrossRefGoogle Scholar
  29. T. Sakurada, T. Komatsu, S. Sakurada, Mechanisms of nociception evoked by intrathecal high-dose morphine. Neurotoxicology 26, 5 (2005)CrossRefGoogle Scholar
  30. K. Sauter, H.H. Kaufman, S.M. Bloomfield, S. Cline, D. Banks, Treatment of high-dose intrathecal morphine overdose. J. Neurosurg. 81, 1 (1994)CrossRefGoogle Scholar
  31. S.A. Schug, D. Saunders, I. Kurowski, M.J. Paech, Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs 20, 11 (2006)CrossRefGoogle Scholar
  32. Shinozawa, Y., Abe, T., Kondo, T.: A proportional microvalve using a bi-stable magnetic actuator. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 233–237 (1997)Google Scholar
  33. D.P. Wermeling, Ziconotide an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy 25, 8 (2005)CrossRefGoogle Scholar
  34. M. Winkelmuller, W. Winkelmuller, Long-term effects of continuous intrathecal opioid treatment in chronic pain of nonmalignant etiology. J. Neurosurg. 85, 3 (1996)Google Scholar
  35. E.H. Yang, C. Lee, J. Mueller, T. George, Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion. J. Microelectromech. Syst. 13, 5 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Allan Thomas Evans
    • 1
  • Jong M. Park
    • 1
  • Srinivas Chiravuri
    • 2
  • Yogesh B. Gianchandani
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Department of AnesthesiologyAnn ArborUSA

Personalised recommendations