Biomedical Microdevices

, Volume 12, Issue 1, pp 115–124 | Cite as

Droplet position control in digital microfluidic systems

Article

Abstract

Research on so called digital microfluidic systems (DMS) capable of manipulating individual microdroplets on a cell-based structure has enormously increased in the past few years, mainly due to the demand of the technology-dependent biomedical applications. Significant research in this area has been related to the simulation and modeling of droplet motion, demonstration of different drop actuation techniques on laboratory-scale prototypes, and droplet routing and scheduling for more efficient assay procedures. This paper introduces the basics of the control analysis and design of a DMS, which is a relatively unexplored area in digital microfluidics. This paper starts with a discussion on a simplified dynamic model of droplet motion in a planar array of cells, and continues with more complicated dynamic models that are necessary to realize the structure of an appropriate closed-loop control system for the DMS. The control analysis and design includes both the transient and steady-state responses of the DMS under external driving forces. The proposed control analysis and design approach is implemented into SIMULINK® models to demonstrate the performance of the DMS through simulation using the system parameters previously reported in the literature.

Keywords

Digital microfluidics Droplet Feedback control 

References

  1. A. Ahmadi, J. Nichols, M. Hoorfar, H. Najjaran, J. Holzman, Proc. of SPIE Def., Sec. and Sens. Conf. 7318 , Orlando, Florida (2009)Google Scholar
  2. M. Armani, S. Chaudhary, R. Probst, S. Walker, B. Shapiro, Int. J. Robust Nonlinear Control 15, 785–803 (2005a)MATHCrossRefMathSciNetGoogle Scholar
  3. M. Armani, S. Walker, B. Shapiro, Proceedings of the 13th Med. Conf. on Cont. and Aut., Limassol, Cyprus, 131–138 (2005)Google Scholar
  4. V. Bahadur, S.V. Garimella, J. Micromechanics Microengineering 16, 1494–1503 (2006)CrossRefGoogle Scholar
  5. J. Berthier, P. Dubois, P. Clementz, P. Claustre, C. Peponnet, Y. Fouillet, Sens. Actuators A 134, 471–479 (2007)CrossRefGoogle Scholar
  6. K.F. Böhringer, IEEE Trans. Comput-Aided Des. Integr. Circ. Syst. 25, 329–339 (2006)Google Scholar
  7. S. Chakraborty, R. Mittal, J. Appl. Phys. 101, 104901–8 (2007)CrossRefGoogle Scholar
  8. J.H. Chen, W.H. Hsieh, J. Colloid Interface Sci. 296, 276–283 (2006)CrossRefGoogle Scholar
  9. S. K. Cho, S. K. Fan, H. Moon, C. J. Kim, Proc. IEEE MEMS Conf., Las Vegas, NV, 32–52 (2002)Google Scholar
  10. R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V. Srinivasan, V.K. Pamula, M.G. Pollack, J. Zhou, IEEE Des. Test Comput. 24, 10–24 (2007)CrossRefGoogle Scholar
  11. B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Sci. 283(5398), 57–60 (1999)CrossRefGoogle Scholar
  12. J. Gong and C.-J. Kim, Proc. of 10th Int. Conf. on Min. Systems for Chem. and Life Sci., Tokyo, 1046–1048 (2006)Google Scholar
  13. E. Griffith, S. Akella, Int. J. Rob. Res. 24(11), 933–949 (2005)CrossRefGoogle Scholar
  14. Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth, Lab Chip 5, 308–317 (2005)CrossRefGoogle Scholar
  15. K. Ichimura, S. Oh, M. Nakagawa, Sci. 288(5471), 1624–1626 (2000)CrossRefGoogle Scholar
  16. T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, J. Appl. Phys. 89(3), 1441–1448 (2001)CrossRefGoogle Scholar
  17. J.S. Kuo, P.S. Mihalic, I. Rodriguez, D.T. Chiu, Langmuir 19, 250–255 (2003)CrossRefGoogle Scholar
  18. H. Moon, A.R. Wheeler, R.L. Garrell, J.A. Loo, C.-J. Kim, Lab Chip 6, 1213–1219 (2006)CrossRefGoogle Scholar
  19. B.R. Munson, D. F. Young, T. H. Okiishi, Fundamentals of Fluid Mechanics, 4th edn. (Wiley, 2001)Google Scholar
  20. N.-T. Nguyen, K.M. Ng, X. Huang, Appl. Phys. Let. 89, 052509 (2006)CrossRefGoogle Scholar
  21. P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair, Lab Chip 3, 28–33 (2003)CrossRefGoogle Scholar
  22. P. Paik, V.K. Pamula, K. Chakrabarty, IEEE Trans. on VLSI Sys. 16(4), 432–443 (2008)CrossRefGoogle Scholar
  23. V. K. Pamula, V. Srinivassan, H. Chakrapani, R. B. Fair, E. J. Toone, Proc. of the IEEE Conf. on MEMS, Miami, FL, 722–725 (2005)Google Scholar
  24. M.G. Pollack, R.B. Fair, A.D. Shenderov, Appl. Phys. Let. 77(11), 1725–1726 (2000)CrossRefGoogle Scholar
  25. M.G. Pollack, P. Y. Paik, A. D. Shenderov, V. K. Pamula, F. S. Dietrich, R. B. Fair, Proc. of the 7th Int. Conf. on Min. Chem. and Biochem. Anal. Sys., Squaw Valley, CA, 619–622 (2003)Google Scholar
  26. M.G. Pollack, A.D. Shenderov, R.B. Fair, Lab Chip 2(1), 96–101 (2002)CrossRefGoogle Scholar
  27. H. Ren, R.B. Fair, M.G. Pollack, E.J. Shaughnessy, Sens. Actuators B 87, 201–206 (2002)CrossRefGoogle Scholar
  28. H. Ren, R.B. Fair, M.G. Pollack, Sens. Actuators B 98, 319–327 (2004)CrossRefGoogle Scholar
  29. J. Rickets, K. Irick, N. Vijaykrishnan, M. J. Irwin, Proc. of the Conf. on Design, Aut. and Test in Europe, Munich, 329–334 (2006)Google Scholar
  30. T.S. Sammarco, M.A. Burns, AIChe J. 45(2), 350–366 (1999)CrossRefGoogle Scholar
  31. V. Srinivasan, V. K. Pamula, M. G. Pollack, R. B. Fair, Proc. of the 7th Int. Conf. on Min. Chem. and Biochem. Anal. Sys., Squaw Valley, CA, 1287–1290 (2003)Google Scholar
  32. F. Su, K. Chakrabarty, ACM J. on Emerg. Tech. in Comp. Sys 2, 104–128 (2006)CrossRefGoogle Scholar
  33. F. Su, K. Chakrabarty, ACM J. on Emerg. Tech. in Comp. Sys. 3(16), 16:1–16:32 (2008)Google Scholar
  34. R.S. Subramanian, N. Moumen, J.B. McLaughlin, Langmuir 21, 11844–11849 (2005)CrossRefGoogle Scholar
  35. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198–220 (2008)CrossRefGoogle Scholar
  36. G.M. Whitesides, Nature 442, 368–373 (2006)CrossRefGoogle Scholar
  37. A. Wixforth, C. Strobl, C. Gauer, A. Toegl, J. Scriba, Z.V. Guttenberg, Anal. Bioanal. Chem. 379(7–8), 982–991 (2004)Google Scholar
  38. J. Zeng, F.T. Korsmeyer, Lab Chip 4(4), 265–277 (2004)CrossRefGoogle Scholar
  39. S.W. Walker, B. Shapiro, J. of MEMS 15(4), 986–1000 (2006)Google Scholar
  40. T. Xu, K. Chakrabarty, Proc. of IEEE Int. Test Conf., Santa Clara, CA, 1–10 (2007)Google Scholar
  41. P.-H. Yuh, C.-L. Yang, Y.-W. Chang, Proc. of Design Aut. Conf., San Francisco, CA, 931–934 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of EngineeringUniversity of British Columbia OkanaganKelownaCanada

Personalised recommendations