Biomedical Microdevices

, 11:1169 | Cite as

Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection

  • Xinyu Liu
  • Yu SunEmail author


This paper presents the design and microfabrication of a vacuum-based cell holding device for single-cell immobilization and the use of the device in mouse zygote microinjection. The device contains many through-holes, constructed via two-sided glass wet etching and polydimethylsiloxane (PDMS)-glass bonding. Experimental results of mouse zygote immobilization and microinjection demonstrate that the device is effective for rapid cell immobilization and does not produce negative effect on embryonic development.


Single cell immobilization Cell holding device Microfabrication Cell microinjection 



This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Ontario Ministry of Research and Innovation, and the Ontario Centers of Excellence. We also acknowledge the financial support from the Canada Research Chairs program to YS, and the Ontario Graduate Scholarship program to XL.

Supplementary material

10544_2009_9333_MOESM1_ESM.mpg (9.3 mb)
(MPG 9.26 MB)


  1. C.F. Carlborg, T. Haraldsson, G. Stemme, W. van der Wijngaart, in Proceedings of International Conference on Miniaturized Systems for Chemistry and Life Sciences (Paris, France, 2007), pp. 527–529Google Scholar
  2. D.D. Carlo, L.Y. Wu, L.P. Lee, Lab Chip 6(11), 1445 (2006)CrossRefGoogle Scholar
  3. D. Castel, A. Pitaval, M.A. Debily, X. Gidrol, Drug Discov. Today 11(13–14), 616 (2006)CrossRefGoogle Scholar
  4. D.S. Chen, M.M. Davis, Curr. Opin. Chem. Biol. 10(1), 28 (2006)CrossRefGoogle Scholar
  5. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Science 276(5317), 1425 (1997)CrossRefGoogle Scholar
  6. R.R. Gattass, E. Mazur, Nat. Photonics 2(4), 219 (2008)CrossRefGoogle Scholar
  7. A. Haake, A. Neild, D.H. Kim, J.E. Ihm, Y. Sun, J. Dual, B.K. Ju, Ultrasound Med. Biol. 31(6), 857 (2005)CrossRefGoogle Scholar
  8. C. Iliescu, F.E. Tay, J. Miao, Sensor. Actuat. A-Phys. 133(2), 395 (2007)CrossRefGoogle Scholar
  9. K. Ino, M. Okochi, N. Konishi, M. Nakatochi, R. Imai, M. Shikida, A. Ito, H. Honda, Lab Chip 8(1), 134 (2008)CrossRefGoogle Scholar
  10. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, J. Cooper, Lab Chip 5(11), 1224 (2005)CrossRefGoogle Scholar
  11. X.Y. Liu, Y. Sun, in Proceedings of IEEE International Conference on Robotics and Automation (Kobe, Japan, 2009), pp. 526–531Google Scholar
  12. B. Matthews, J. Judy, J. Microelectromech. Syst. 15(1), 214 (2006)CrossRefGoogle Scholar
  13. D. Murphy, Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, New York, 2001)Google Scholar
  14. J.R. Rettig, A. Folch, Anal. Chem. 77(17), 5628 (2005)CrossRefGoogle Scholar
  15. T. Suzuki, H. Yamamoto1, M. Ohoka, I. Kanno1, M. Washizu, H. Kotera, in Proceedings of International Conference on Miniaturized Systems for Chemistry and Life Sciences (Paris, France, 2007), pp. 1765–1767Google Scholar
  16. W.H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. U. S. A. 104(4), 1146 (2007)CrossRefGoogle Scholar
  17. J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, Anal. Chem. 74(16), 3984 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Advanced Micro and Nanosystems LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations