Advertisement

Biomedical Microdevices

, 11:1081 | Cite as

An open-access microfluidic model for lung-specific functional studies at an air-liquid interface

  • Divya D. Nalayanda
  • Christopher Puleo
  • William B. Fulton
  • Leilani M. Sharpe
  • Tza-Huei Wang
  • Fizan Abdullah
Article

Abstract

In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

Keywords

Microfluidic cell culture Alveolar cells Air-liquid interface 

Notes

Acknowledgements

This work was supported by the Robert Garrett Fund for the Surgical Treatment of Children. The authors would like to thank Venkata Sama and Yi Zhang for assistance with data analysis and manuscript review.

References

  1. I.Y. Adamson, D.H. Bowden, Lab. Invest. 30, 35–42 (1974)Google Scholar
  2. I.Y. Adamson, D.H. Bowden, Lab. Invest. 32, 736–745 (1975)Google Scholar
  3. A. Adson, T.J. Raub, P.S. Burton, C.L. Barsuhn, A.R. Hilgers, K.I. Audus, N.F. Ho, J Pharm. Sci. 83, 1529–1536 (1994). doi: 10.1002/jps.2600831103 CrossRefGoogle Scholar
  4. D.J. Beebe, G.A. Mensing, G.M. Walker, Annu Rev. Biomed. Eng. 4, 261–286 (2002). doi: 10.1146/annurev.bioeng.4.112601.125916 CrossRefGoogle Scholar
  5. K.A. Birkness, M. Deslauriers, J.H. Bartlett, E.H. White, C.H. King, F.D. Quinn, Infect. Immun. 67, 653–658 (1999)Google Scholar
  6. A.J. Carterson, B.K. Honer zu, C.M. Ott, M.S. Clarke, D.L. Pierson, C.R. Vanderburg, K.L. Buchanan, C.A. Nickerson, M.J. Schurr, Infect. Immun. 73, 1129–1140 (2005)CrossRefGoogle Scholar
  7. B.R. Celli, W. MacNee, Eur. Respir. J. 23, 932–946 (2004). doi: 10.1183/09031936.04.00014304 CrossRefGoogle Scholar
  8. Centers for Disease Control and Prevention. National Center for Health Statistics. Final Vital Statistics Report. Deaths: Final Data for 2004. 55(19) (2007a)Google Scholar
  9. P. Chen, E. Marsilio, R.H. Goldstein, I.V. Yannas, M Spector. Tissue Eng. 11, 1436–1448 (2005). doi: 10.1089/ten.2005.11.1436 CrossRefGoogle Scholar
  10. V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia, Biotechnol. Bioeng. 88, 399–415 (2004). doi: 10.1002/bit.20254 CrossRefGoogle Scholar
  11. L.G. Dobbs, M.S. Pian, M. Maglio, S. Dumars, L. Allen, Am. J. Physiol. 273, L347–L354 (1997)Google Scholar
  12. U.S Environmental Protection Agency, Air and Radiation: Six Common Pollutants; Particulate Matter, Basic Information. (2007b)Google Scholar
  13. I. Gonda, J Pharm. Sci. 89, 940–945 (2000). doi: 10.1002/1520-6017(200007)89:7<940::AID-JPS11>;3.0.CO;2-B CrossRefGoogle Scholar
  14. N. Gueven, B. Glatthaar, H.G. Manke, H. Haemmerle, Eur. Respir. J. 9, 968–975 (1996). doi: 10.1183/09031936.96.09050968 CrossRefGoogle Scholar
  15. D.M. Haies, J. Gil, E.R. Weibel, Am. Rev. Respir. Dis. 123, 533–541 (1981)Google Scholar
  16. D. Huh, H. Fujioka, Y.C. Tung, N. Futai, R. Paine III, J.B. Grotberg, S. Takayama, Proc. Natl Acad. Sci. USA 104, 18886–18891 (2007). doi: 10.1073/pnas.0610868104 CrossRefGoogle Scholar
  17. H.V. Im, P. Gehr, V. Gerber, M.M. Lee, S. Schurch, Respir. Physiol. 109, 81–93 (1997). doi: 10.1016/S0034-5687(97)84032-7 CrossRefGoogle Scholar
  18. J.J. De, R.G. Lammertink, M. Wessling, Lab Chip 6, 1125–1139 (2006). doi: 10.1039/b603275c CrossRefGoogle Scholar
  19. K.J. Kim, J.M. Cheek, E.D. Crandall, Respir. Physiol. 85, 245–256 (1991). doi: 10.1016/0034-5687(91)90065-Q CrossRefGoogle Scholar
  20. L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Lab Chip 6, 394–406 (2006). doi: 10.1039/b511718f CrossRefGoogle Scholar
  21. W.G. Koh, M.V. Pishko, Anal. Bioanal. Chem. 385, 1389–1397 (2006). doi: 10.1007/s00216-006-0571-6 CrossRefGoogle Scholar
  22. P.A. Martorana, B. Lunghi, M. Lucattelli, C.G. De, R. Beume, G. Lungarella, B.M.C. Pulm. Med. 8, 17 (2008)CrossRefGoogle Scholar
  23. R.J. Mason, M.C. Lewis, K.E. Edeen, K. Cormick-Shannon, L.D. Nielsen, J.M. Shannon, Am J. Physiol. Lung Cell. Mol. Physiol. 282, L249–L258 (2002)Google Scholar
  24. D.D. Nalayanda, C.M. Puleo, W.B. Fulton, T.H. Wang, F. Abdullah, Exp. Lung Res. 33, 321–335 (2007). doi: 10.1080/01902140701557754 CrossRefGoogle Scholar
  25. S.W. Rhee, A.M. Taylor, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Lab Chip 5, 102–107 (2005). doi: 10.1039/b403091e CrossRefGoogle Scholar
  26. S. Schurch, J. Goerke, J.A. Clements, Proc. Natl Acad. Sci. USA 73, 4698–4702 (1976). doi: 10.1073/pnas.73.12.4698 CrossRefGoogle Scholar
  27. P. Seong-Hee, S.L. Yaming Su, P.J. Sinko, Methods in Pharmacology and Toxicology Optimization in Drug Discovery: In Vitro Methods (Humana Press Inc, Totowa, 2006), pp. 77–87Google Scholar
  28. W. Tan, T.A. Desai, J Biomed. Mater. Res. A 72, 146–160 (2005). doi: 10.1002/jbm.a.30182 Google Scholar
  29. A.E. Taylor, K.A. Gaar Jr., Am. J. Physiol. 218, 1133–1140 (1970)Google Scholar
  30. U.S. Department of Health and Human Services, National Institutes of Health. National Heart Lung and Blood Institute. Morbidity and Mortality: 2007 Chartbook on Cardiovascular, Lung and Blood Diseases. (2008)Google Scholar
  31. A.S. Verkman, M.A. Matthay, Y. Song, Am J. Physiol. Lung Cell. Mol. Physiol. 278, L867–L879 (2000)Google Scholar
  32. G.M. Walker, H.C. Zeringue, D.J. Beebe, Lab Chip 4, 91–97 (2004). doi: 10.1039/b311214d CrossRefGoogle Scholar
  33. M. Zhang, K.J. Kim, D. Iyer, Y. Lin, J. Belisle, K. McEnery, E.D. Crandall, P.F. Barnes, Infect. Immun. 65, 692–698 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Divya D. Nalayanda
    • 1
    • 2
  • Christopher Puleo
    • 2
  • William B. Fulton
    • 1
  • Leilani M. Sharpe
    • 1
  • Tza-Huei Wang
    • 2
    • 3
  • Fizan Abdullah
    • 1
  1. 1.Division of Pediatric SurgeryJohns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations