We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Advertisement

Contactless dielectrophoresis: a new technique for cell manipulation

Abstract

Dielectrophoresis (DEP) has become a promising technique to separate and identify cells and microparticles suspended in a medium based on their size or electrical properties. Presented herein is a new technique to provide the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid. In our method, electrodes are capacitively-coupled to a fluidic channel through dielectric barriers; the application of a high-frequency electric field to these electrodes then induces an electric field in the channel. This technique combines the cell manipulation abilities of traditional DEP with the ease of fabrication found in insulator-based technologies. A microfluidic device was fabricated based on this principle to determine the feasibility of cell manipulations through contactless DEP (cDEP). We were able to demonstrate cell responses unique to the DEP effect in three separate cell lines. These results illustrate the potential for this technique to identify cells through their electrical properties without fear of contamination from electrodes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. L. Altomare, M. Borgatti, G. Medoro, N. Manaresi, M. Tartagni, R. Guerrieri, R. Gambari, Biotechnol. Bioeng. 82, 474 (2003). doi:10.1002/bit.10590

  2. W. M. K. J. G. m. b. H. Arnold, Juelich (Germany, F.R.). Inst. fuer Medizin); Zimmermann, U. Plant Physiol. Biochem. 37, 908 (1982)

  3. A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769 (1987). doi:10.1038/330769a0

  4. F.F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, J. Phys. D. Appl. Phys. (Berl.) 27, 2659 (1994)

  5. J. Cheng, E.L. Sheldon, L. Wu, M.J. Heller, J.P. O'Connell, Anal. Chem. 70, 2321 (1998). doi:10.1021/ac971274g

  6. C. Chou, J. Tegenfeldt, O. Bakajin, S. Chan, E. Cox, N. Darnton, T. Duke, R. Austin, Biophys. J. 83, 2170 (2002). doi:10.1016/S0006-3495(02)73977-5

  7. E.B. Cummings, A.K. Singh, Anal. Chem. 75, 4724 (2003). doi:10.1021/ac0340612

  8. C.M. Das, F. Becker, S. Vernon, J. Noshari, C. Joyce, P.R. Gascoyne, Anal. Chem. 77, 2708 (2005). doi:10.1021/ac048196z

  9. R.V. Davalos, G.J. McGraw, T.I. Wallow, A.M. Morales, K.L. Krafcik, Y. Fintschenko, E.B. Cummings, B.A. Simmons, Anal. Bioanal. Chem. 390, 847 (2008). doi:10.1007/s00216-007-1426-5

  10. R.V. Davalos, L.M. Mir, B. Rubinsky. Ann. Biomed. Eng. 33, 223 (2005). doi:10.1007/s10439-005-8981-8

  11. A.D. Dussaud, J. Appl. Phys. 88, 5463 (2000). doi:10.1063/1.1315617

  12. J.F. Edd, R.V. Davalos, Technol. Cancer Res. Treat. 6, 275 (2007)

  13. L.A. Flanagan, J. Lu, L. Wang, S.A. Marchenko, N.L. Jeon, A.P. Lee, E.S. Monuki, Stem Cells 26, 656 (2008). doi:10.1634/stemcells.2007-0810

  14. A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, Nat. Biotechnol. 17, 1109 (1999). doi:10.1038/15095

  15. P.R.C. Gascoyne, J.V. Vykoukal, Proc. IEEE 92, 22 (2004). doi:10.1109/JPROC.2003.820535

  16. P.R.C. Gascoyne, X.-B. Wang, Y. Huang, F.F. Becker, IEEE Trans. Ind. Appl. 33, 670 (1997). doi:10.1109/28.585856

  17. J.C. Giddings, Science 260, 1456 (1993). doi:10.1126/science.8502990

  18. Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Anal. Chem. 74, 3362 (2002). doi:10.1021/ac011273v

  19. M.P. Hughes, Electrophoresis 23, 2569 (2002). doi:10.1002/1522-2683(200208) 23:16<2569::AID-ELPS2569>3.0.CO;2-M

  20. Y. Kang, D. Li, S.A. Kalams, J.E. Eid, Biomed. Microdevices 10, 243 (2008). doi:10.1007/s10544-007-9130-y

  21. B.H. Lapizco-Encinas, R.V. Davalos, B.A. Simmons, E.B. Cummings, Y. Fintschenko, J. Microbiol. Methods 62, 317 (2005). doi:10.1016/j.mimet.2005.04.027

  22. B.H. Lapizco-Encinas, S. Ozuna-Chacon, M. Rito-Palomares, J. Chromatogr. A 1206, 45 (2008). doi:10.1016/j.chroma.2008.05.077

  23. B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Anal. Chem. 76, 1571 (2004). doi:10.1021/ac034804j

  24. G.H. Markx, M.S. Talary, R. OPethig, J. Biotechnol. 32, 29 (1994). doi:10.1016/0168-1656(94)90117-1

  25. S. Masuda, T. Itagaki, M. Kosakada, IEEE Trans. Ind. Appl. 24, 740 (1988). doi:10.1109/28.6130

  26. S. Miltenyi, W. Muller, W. Weichel, A. Radbruch. Cytometry 11, 231 (1990). doi:10.1002/cyto.990110203

  27. H.A. Pohl, J. Appl. Phys. 29 (1958)

  28. H.A. Pohl, J. Appl. Phys. 22, 869 (1951)

  29. P. Sabounchi, D.E. Huber, A.E. Harris, B.A. Simmons, MicroTAS Conference, San Diego (2008).

  30. P. Sabounchi, A.M. Morales, P. Ponce, L.P. Lee, B.A. Simmons, R.V. Davalos, Biomed Microdevices 10, 661 (2008). doi:10.1007/s10544-008-9177-4

  31. B.A. Simmons, G.J. McGraw, R.V. Davalos, G.J. Fiechtner, Y. Fintschenko, E.B. Cummings, MRS BULLETIN 31, 120 (2006)

  32. F. S. Steffen Hardt, Microfluidic Technologies for Miniaturized Analysis Systems (Springer, 2007). doi:10.1007/978-0-387-68424-6

  33. P.K. Wong, IEEE/ASME Transactions on Mechatronics 9, 366 (2004). doi:10.1109/TMECH.2004.828659

  34. J. Yang, Y. Huang, X.B. Wang, F.F. Becker, P.R. Gascoyne, Anal Chem 71, 911 (1999). doi:10.1021/ac981250p

Download references

Acknowledgements

This work was supported by the Institute for Critical Technology and Applied Science (ICTAS). Also the authors would like to acknowledge Dr. Eva M. Schmelz at the department of Human Nutrition, Foods, & Exercise and Phillip Andrew Zellner for their cooperation.

Author information

Correspondence to Rafael V. Davalos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 37262 kb)

video 1

(MPG 37262 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shafiee, H., Caldwell, J.L., Sano, M.B. et al. Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11, 997 (2009). https://doi.org/10.1007/s10544-009-9317-5

Download citation

Keywords

  • BioMEMS
  • Biochip
  • Dielectrophoretic
  • Microfluidics
  • Sample handling
  • Electrorotation
  • Sample preparation