Biomedical Microdevices

, 11:997

Contactless dielectrophoresis: a new technique for cell manipulation

  • Hadi Shafiee
  • John L. Caldwell
  • Michael B. Sano
  • Rafael V. Davalos


Dielectrophoresis (DEP) has become a promising technique to separate and identify cells and microparticles suspended in a medium based on their size or electrical properties. Presented herein is a new technique to provide the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid. In our method, electrodes are capacitively-coupled to a fluidic channel through dielectric barriers; the application of a high-frequency electric field to these electrodes then induces an electric field in the channel. This technique combines the cell manipulation abilities of traditional DEP with the ease of fabrication found in insulator-based technologies. A microfluidic device was fabricated based on this principle to determine the feasibility of cell manipulations through contactless DEP (cDEP). We were able to demonstrate cell responses unique to the DEP effect in three separate cell lines. These results illustrate the potential for this technique to identify cells through their electrical properties without fear of contamination from electrodes.


BioMEMS Biochip Dielectrophoretic Microfluidics Sample handling Electrorotation Sample preparation 

Supplementary material

video 1

(MPG 37262 kb)


  1. L. Altomare, M. Borgatti, G. Medoro, N. Manaresi, M. Tartagni, R. Guerrieri, R. Gambari, Biotechnol. Bioeng. 82, 474 (2003). doi:10.1002/bit.10590 CrossRefGoogle Scholar
  2. W. M. K. J. G. m. b. H. Arnold, Juelich (Germany, F.R.). Inst. fuer Medizin); Zimmermann, U. Plant Physiol. Biochem. 37, 908 (1982)Google Scholar
  3. A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769 (1987). doi:10.1038/330769a0 CrossRefGoogle Scholar
  4. F.F. Becker, X.-B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, J. Phys. D. Appl. Phys. (Berl.) 27, 2659 (1994)CrossRefGoogle Scholar
  5. J. Cheng, E.L. Sheldon, L. Wu, M.J. Heller, J.P. O'Connell, Anal. Chem. 70, 2321 (1998). doi:10.1021/ac971274g CrossRefGoogle Scholar
  6. C. Chou, J. Tegenfeldt, O. Bakajin, S. Chan, E. Cox, N. Darnton, T. Duke, R. Austin, Biophys. J. 83, 2170 (2002). doi:10.1016/S0006-3495(02)73977-5 CrossRefGoogle Scholar
  7. E.B. Cummings, A.K. Singh, Anal. Chem. 75, 4724 (2003). doi:10.1021/ac0340612 CrossRefGoogle Scholar
  8. C.M. Das, F. Becker, S. Vernon, J. Noshari, C. Joyce, P.R. Gascoyne, Anal. Chem. 77, 2708 (2005). doi:10.1021/ac048196z CrossRefGoogle Scholar
  9. R.V. Davalos, G.J. McGraw, T.I. Wallow, A.M. Morales, K.L. Krafcik, Y. Fintschenko, E.B. Cummings, B.A. Simmons, Anal. Bioanal. Chem. 390, 847 (2008). doi:10.1007/s00216-007-1426-5 CrossRefGoogle Scholar
  10. R.V. Davalos, L.M. Mir, B. Rubinsky. Ann. Biomed. Eng. 33, 223 (2005). doi:10.1007/s10439-005-8981-8 CrossRefGoogle Scholar
  11. A.D. Dussaud, J. Appl. Phys. 88, 5463 (2000). doi:10.1063/1.1315617 CrossRefGoogle Scholar
  12. J.F. Edd, R.V. Davalos, Technol. Cancer Res. Treat. 6, 275 (2007)Google Scholar
  13. L.A. Flanagan, J. Lu, L. Wang, S.A. Marchenko, N.L. Jeon, A.P. Lee, E.S. Monuki, Stem Cells 26, 656 (2008). doi:10.1634/stemcells.2007-0810 CrossRefGoogle Scholar
  14. A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, S.R. Quake, Nat. Biotechnol. 17, 1109 (1999). doi:10.1038/15095 CrossRefGoogle Scholar
  15. P.R.C. Gascoyne, J.V. Vykoukal, Proc. IEEE 92, 22 (2004). doi:10.1109/JPROC.2003.820535 CrossRefGoogle Scholar
  16. P.R.C. Gascoyne, X.-B. Wang, Y. Huang, F.F. Becker, IEEE Trans. Ind. Appl. 33, 670 (1997). doi:10.1109/28.585856 CrossRefGoogle Scholar
  17. J.C. Giddings, Science 260, 1456 (1993). doi:10.1126/science.8502990 CrossRefGoogle Scholar
  18. Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Anal. Chem. 74, 3362 (2002). doi:10.1021/ac011273v CrossRefGoogle Scholar
  19. Y. Kang, D. Li, S.A. Kalams, J.E. Eid, Biomed. Microdevices 10, 243 (2008). doi:10.1007/s10544-007-9130-y CrossRefGoogle Scholar
  20. B.H. Lapizco-Encinas, R.V. Davalos, B.A. Simmons, E.B. Cummings, Y. Fintschenko, J. Microbiol. Methods 62, 317 (2005). doi:10.1016/j.mimet.2005.04.027 CrossRefGoogle Scholar
  21. B.H. Lapizco-Encinas, S. Ozuna-Chacon, M. Rito-Palomares, J. Chromatogr. A 1206, 45 (2008). doi:10.1016/j.chroma.2008.05.077 CrossRefGoogle Scholar
  22. B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Anal. Chem. 76, 1571 (2004). doi:10.1021/ac034804j CrossRefGoogle Scholar
  23. G.H. Markx, M.S. Talary, R. OPethig, J. Biotechnol. 32, 29 (1994). doi:10.1016/0168-1656(94)90117-1 CrossRefGoogle Scholar
  24. S. Masuda, T. Itagaki, M. Kosakada, IEEE Trans. Ind. Appl. 24, 740 (1988). doi:10.1109/28.6130 CrossRefGoogle Scholar
  25. S. Miltenyi, W. Muller, W. Weichel, A. Radbruch. Cytometry 11, 231 (1990). doi:10.1002/cyto.990110203 CrossRefGoogle Scholar
  26. H.A. Pohl, J. Appl. Phys. 29 (1958)Google Scholar
  27. H.A. Pohl, J. Appl. Phys. 22, 869 (1951)CrossRefGoogle Scholar
  28. P. Sabounchi, D.E. Huber, A.E. Harris, B.A. Simmons, MicroTAS Conference, San Diego (2008).Google Scholar
  29. P. Sabounchi, A.M. Morales, P. Ponce, L.P. Lee, B.A. Simmons, R.V. Davalos, Biomed Microdevices 10, 661 (2008). doi:10.1007/s10544-008-9177-4 CrossRefGoogle Scholar
  30. B.A. Simmons, G.J. McGraw, R.V. Davalos, G.J. Fiechtner, Y. Fintschenko, E.B. Cummings, MRS BULLETIN 31, 120 (2006)Google Scholar
  31. F. S. Steffen Hardt, Microfluidic Technologies for Miniaturized Analysis Systems (Springer, 2007). doi:10.1007/978-0-387-68424-6
  32. P.K. Wong, IEEE/ASME Transactions on Mechatronics 9, 366 (2004). doi:10.1109/TMECH.2004.828659 CrossRefGoogle Scholar
  33. J. Yang, Y. Huang, X.B. Wang, F.F. Becker, P.R. Gascoyne, Anal Chem 71, 911 (1999). doi:10.1021/ac981250p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hadi Shafiee
    • 1
    • 4
  • John L. Caldwell
    • 2
    • 4
  • Michael B. Sano
    • 1
    • 4
  • Rafael V. Davalos
    • 1
    • 3
    • 4
  1. 1.Engineering Science and Mechanics DepartmentVirginia TechBlacksburgUSA
  2. 2.Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgUSA
  3. 3.School of Biomedical Engineering & SciencesVirginia Tech—Wake Forest UniversityBlacksburgUSA
  4. 4.Cellular ElectroMechanical Systems (CEMS) Laboratory, Institute for Critical Technology and Applied Science (ICTAS)Virginia TechBlacksburgUSA

Personalised recommendations