Biomedical Microdevices

, Volume 11, Issue 4, pp 893–901

Localized surface plasmon resonance biosensor integrated with microfluidic chip

  • Chengjun Huang
  • Kristien Bonroy
  • Gunter Reekmans
  • Wim Laureyn
  • Katarina Verhaegen
  • Iwijn De Vlaminck
  • Liesbet Lagae
  • Gustaaf Borghs
Article

Abstract

A sensitive and low-cost microfluidic integrated biosensor is developed based on the localized surface plasmon resonance (LSPR) properties of gold nanoparticles, which allows label-free monitoring of biomolecular interactions in real-time. A novel quadrant detection scheme is introduced which continuously measures the change of the light transmitted through the nanoparticle-coated sensor surface. Using a green light emitting diode (LED) as a light source in combination with the quadrant detection scheme, a resolution of 10−4 in refractive index units (RIU) is determined. This performance is comparable to conventional LSPR-based biosensors. The biological sensing is demonstrated using an antigen/antibody (biotin/anti-biotin) system with an optimized gold nanoparticle film. The immobilization of biotin on a thiol-based self-assembled monolayer (SAM) and the subsequent affinity binding of anti-biotin are quantitatively detected by the microfluidic integrated biosensor and a detection limit of 270 ng/mL of anti-biotin was achieved. The microfluidic chip is capable of transporting a precise amount of biological samples to the detection areas to achieve highly sensitive and specific biosensing with decreased reaction time and less reagent consumption. The obtained results are compared with those measured by a surface plasmon resonance (SPR)-based Biacore system for the same binding event. This study demonstrates the feasibility of the integration of LSPR-based biosensing with microfluidic technologies, resulting in a low-cost and portable biosensor candidate compared to the larger and more expensive commercial instruments.

Keywords

Localized surface plasmon resonance (LSPR) Gold nanoparticle Microfluidic Biosensor 

References

  1. K. Bonroy, F. Frederix, G. Reekmans, E. Dewolf, R. De Palma, G. Borghs, P. Declerck, B. Goddeeris, J. Immunol. Methods 312, 167–181 (2006). doi:10.1016/j.jim.2006.03.007 CrossRefGoogle Scholar
  2. A. De Leebeeck, L.K. Kumar, V. de Lange, D. Sinton, R. Gordon, A.G. Brolo, Anal. Chem 79, 4094–4100 (2007). doi:10.1021/ac070001a CrossRefGoogle Scholar
  3. R.M. Deirdre, R.H. Mark, Science 297, 1197–1198 (2002). doi:10.1126/science.297.5584.1197 CrossRefGoogle Scholar
  4. R. De Palma, G. Reekmans, W. Laureyn, G. Borghs, G. Maes, Anal. Chem 79, 7540–7548 (2007). doi:10.1021/ac0713407 CrossRefGoogle Scholar
  5. T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, Sci. Technol. Adv. Mater 6, 491–500 (2005). doi:10.1016/j.stam.2005.03.019 CrossRefGoogle Scholar
  6. D. Erickson, S. Mandal, A.H.J. Yang, B. Cordovez, Microfluid. Nanofluid 4, 33–52 (2008). doi:10.1007/s10404-007-0198-8 CrossRefGoogle Scholar
  7. F. Frederix, J.M. Friedt, K.H. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, G. Borghs, Anal. Chem 75, 6894–6900 (2003). doi:10.1021/ac0346609 CrossRefGoogle Scholar
  8. K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, N. Ogawa, Anal. Bioanal. Chem 386, 639–644 (2006). doi:10.1007/s00216-006-0559-2 CrossRefGoogle Scholar
  9. A.J. Haes, R.P. Van Duyne, J. Am. Chem. Soc 124, 10596–10604 (2002). doi:10.1021/ja020393x CrossRefGoogle Scholar
  10. X.D. Hoa, A.G. Kirk, M. Tabrizian, Biosens. Bioelectron 23, 151–160 (2007). doi:10.1016/j.bios.2007.07.001 CrossRefGoogle Scholar
  11. E. Hutter, M.P. Pileni, J. Phys. Chem. B 107, 6497–6499 (2003). doi:10.1021/jp0342834 CrossRefGoogle Scholar
  12. Y. Iwasaki, T. Horiuchi, O. Niwa, Anal. Chem 73, 1595–1598 (2001). doi:10.1021/ac0012851 CrossRefGoogle Scholar
  13. T. Kalkbrenner, U. Hakanson, V. Sandoghdar, Nano Lett 4, 2309–2314 (2004). doi:10.1021/nl048694n CrossRefGoogle Scholar
  14. C.K. Kim, R.R. Kalluru, J.P. Singh, A. Fortner, J. Griffin, G.K. Darbha, P.C. Ray, Nanotechnology 17, 3085–3093 (2006). doi:10.1088/0957-4484/17/13/001 CrossRefGoogle Scholar
  15. S.J. Kim, K.V. Gobi, H. Iwasaka, H. Tanaka, N. Miura, Biosens. Bioelectron 23, 701–707 (2007). doi:10.1016/j.bios.2007.08.010 CrossRefGoogle Scholar
  16. M. Lahav, A. Vaskevich, I. Rubinstein, Langmuir 20, 7365–7367 (2004). doi:10.1021/la0489054 CrossRefGoogle Scholar
  17. E.M. Larsson, J. Alegret, M. Käll, D.S. Sutherland, Nano Lett 7, 1256–1263 (2007). doi:10.1021/nl0701612 CrossRefGoogle Scholar
  18. G.L. Liu, J. Kim, Y. Lu, P.L. Lee, Nat. Mater 5, 27–32 (2006). doi:10.1038/nmat1528 CrossRefGoogle Scholar
  19. Y.Q. Luo, Y. Fang, R.N. Zare, Lab Chip 8, 694–700 (2008). doi:10.1039/b800606g CrossRefGoogle Scholar
  20. X.L. Mao, J.R. Waldeisen, B.K. Juluri, T.J. Huang, Lab Chip 7, 1303–1308 (2007). doi:10.1039/b708863a CrossRefGoogle Scholar
  21. K. Mitsui, Y. Handa, K. Kajikawa, Appl. Phys. Lett 85, 4231–4233 (2004). doi:10.1063/1.1812583 CrossRefGoogle Scholar
  22. V. Nanduri, A.K. Bhunia, S.I. Tu, G.C. Paoli, J.D. Brewster, Biosens. Bioelectron 23, 248–252 (2007). doi:10.1016/j.bios.2007.04.007 CrossRefGoogle Scholar
  23. N. Nath, A. Chilkoti, Anal. Chem 76, 5370–5378 (2004). doi:10.1021/ac049741z CrossRefGoogle Scholar
  24. S. Peeters, T. Stakenborg, G. Reekmans, W. Laureyn, L. Lagae, A. Van Aerschot, M. Van Ranst, Biosens. Bioelectron 24, 72–77 (2008). doi:10.1016/j.bios.2008.03.012 CrossRefGoogle Scholar
  25. S.D. Petra, M. Andreas, Nat. Rev. Drug Discov 5, 210–218 (2006). doi:10.1038/nrd1985 CrossRefGoogle Scholar
  26. W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg, Opt. Commun 220, 137–141 (2003). doi:10.1016/S0030-4018(03)01357-9 CrossRefGoogle Scholar
  27. J.C. Riboh, A.J. Haes, A.D. McLFarland, C.R. Yonzon, R.P. Van Duyne, J. Phys. Chem. B 107, 1772–1780 (2003). doi:10.1021/jp022130v CrossRefGoogle Scholar
  28. P.E. Sheehan, L.J. Whiteman, Nano Lett 5, 803–807 (2005). doi:10.1021/nl050298x CrossRefGoogle Scholar
  29. D.A. Stuart, A.J. Haes, C.R. Yonzon, E.M. Hicks, R.P. Van Duyne, I.E.E. Proc. Nanobiotechnol 152, 13–32 (2005). doi:10.1049/ip-nbt:20045012 CrossRefGoogle Scholar
  30. S. Tanev, V.V. Tuchin, P. Paddon, Laser Phys. Lett 3, 594–598 (2006). doi:10.1002/lapl.200610052 CrossRefGoogle Scholar
  31. B.H. Weigl, R.L. Bardell, C.R. Cabrera, Adv. Drug Res 55, 349–377 (2003). doi:10.1016/S0169-409X(02)00223-5 CrossRefGoogle Scholar
  32. K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem 58, 267–297 (2007). doi:10.1146/annurev.physchem.58.032806.104607 CrossRefGoogle Scholar
  33. J. Ye, K. Bonroy, D. Nelis, F. Frederix, J. D’Haen, G. Maes, G. Borghs, Colloids Surf. A Physicochem. Eng. Asp 321, 313–317 (2008). doi:10.1016/j.colsurfa.2008.01.028 CrossRefGoogle Scholar
  34. P.K. Yuen, G.S. Li, Y.J. Bao, U.R. Muller, Lab Chip 3, 46–50 (2003). doi:10.1039/b210274a CrossRefGoogle Scholar
  35. H.Q. Zhang, S. Boussaad, N.J. Tao, Rev. Sci. Instrum. 74, 150–153 (2003). doi:10.1063/1.1523649 CrossRefGoogle Scholar
  36. Z.W. Zou, J.H. Kai, M.J. Rust, J. Han, C.H. Ahn, Sens. Actua A 136, 518–526 (2007). doi:10.1016/j.sna.2006.12.006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chengjun Huang
    • 1
    • 2
  • Kristien Bonroy
    • 1
  • Gunter Reekmans
    • 1
  • Wim Laureyn
    • 1
  • Katarina Verhaegen
    • 1
  • Iwijn De Vlaminck
    • 1
    • 2
  • Liesbet Lagae
    • 1
  • Gustaaf Borghs
    • 1
  1. 1.Interuniversity Microelectronics Center (IMEC)LeuvenBelgium
  2. 2.Department of Electrical Engineering (ESAT)Katholieke Universiteit (KU) LeuvenLeuvenBelgium

Personalised recommendations