Biomedical Microdevices

, Volume 11, Issue 4, pp 851–859 | Cite as

Coplanar film electrodes facilitate bovine nuclear transfer cloning

  • Andrew ClowEmail author
  • Paul Gaynor
  • Björn Oback


Automated lab on chip systems offer increased throughput and reproducibility, but the implementation of microelectrodes presently relies on miniaturisation of parallel plate electrodes that are time consuming and costly to fabricate. Electric field modelling of open electrofusion chambers suggested that widely spaced (≥2 mm) coplanar film electrodes should result in similar cell fusion rates as parallel plate electrodes provided the cell positioning was roughly midway between the electrodes. This hypothesis was investigated by electrofusion trials of bovine oocyte-donor cell couplets used in nuclear transfer (NT) cloning. Comparative experiments with reference parallel plate electrodes were conducted as controls. Coplanar fusion rates ≥ 90% were demonstrated for embryonic blastomeres, follicular cells and fetal and adult fibroblasts as NT donor cells. For embryonic and adult cell types, there was no significant difference in fusion rate between coplanar and parallel plate electrodes. For both electrode geometries, fusion efficiency with adult fibroblasts was highest at a calculated field strength of 2.33 kV/cm. The coplanar electrodes required a voltage π/2 times greater than parallel plate electrodes to achieve equivalent field strength when the couplets are placed midway between the electrodes.


Cloning Bovine Nuclear transfer Electrofusion 



We would like to thank T. Delaney, J. Oliver, J. Oswald and P. Turner for excellent technical assistance in carrying out the fusion experiments; S. Finlay and M. Steyn-Ross, University of Waikato, for loan of equipment and technical advice; and H. Devereux, University of Canterbury, for advice on micro fabrication.


  1. D.J. Brenner, H. Quan, Statistician 39, 391 (1990). doi: 10.2307/2349083 CrossRefGoogle Scholar
  2. K.H. Campbell, P. Loi, P. Cappai, I. Wilmut, Biol. Reprod. 50, 1385 (1994). doi: 10.1095/biolreprod50.6.1385 CrossRefGoogle Scholar
  3. K.H.S. Campbell, J. McWhir, W.A. Ritchie, I. Wilmut, Nature 380, 64 (1996). doi: 10.1038/380064a0 CrossRefGoogle Scholar
  4. D.C. Chang, T.S. Reese, Biophys. J. 58, 1 (1990). doi: 10.1016/S0006-3495(90)82348-1 CrossRefGoogle Scholar
  5. Y. Chung, S. Becker, Methods Enzymol. 418, 135 (2006). doi: 10.1016/S0076-6879(06)18009-X CrossRefGoogle Scholar
  6. P. Gaynor, D. Wells, B. Oback, Med. Biol. Eng. Comput. 43, 150 (2005). doi: 10.1007/BF02345137 CrossRefGoogle Scholar
  7. Graham, C.F.: In: Wistar Inst. Symp. Monogr., p.19. The Wistar Institute Press, Philadelphia (1969)Google Scholar
  8. H. He, D.C. Chang, Y.-K. Lee, Bioelectrochemistry 70, 363 (2007)CrossRefGoogle Scholar
  9. H. He, D.C. Chang, Y.-K. Lee, Bioelectrochemistry 68, 89 (2006)CrossRefGoogle Scholar
  10. D. Holmes, H. Morgan, N.G. Green, Biosens. Bioelectron. 21, 1621 (2006)CrossRefGoogle Scholar
  11. D. Marcuse, IEEE J. Quantum Electron. 25, 939 (1989)CrossRefGoogle Scholar
  12. P.M. Misica-Turner, F.C. Oback, M. Eichenlaub, D.N. Wells, B. Oback, Biol. Reprod. 76, 268 (2007)CrossRefGoogle Scholar
  13. T. Müller, W.M. Arnold, T. Schnelle, R. Hagedorn, G. Fuhr, U. Zimmermann, Electrophoresis 14, 764 (1993)CrossRefGoogle Scholar
  14. B. Oback, D.N. Wells, Cloning Stem Cells 5, 243 (2003)CrossRefGoogle Scholar
  15. B. Oback, A.T. Wiersema, P. Gaynor, G. Laible, F.C. Tucker, J.E. Oliver, A.L. Miller, H.E. Troskie, K.L. Wilson, J.T. Forsyth, M.C. Berg, K. Cockrem, V. McMillan, H.R. Tervit, D.N. Wells, Cloning Stem Cells 5, 3 (2003)CrossRefGoogle Scholar
  16. B. Oback, D.N. Wells, Adv. Exp. Med. Biol. 591, 30 (2007)CrossRefGoogle Scholar
  17. S.M. Rhind, J.E. Taylor, P.A. De Sousa, T.J. King, M. McGarry, I. Wilmut, Nat. Rev. Genet. 4, 855 (2003)CrossRefGoogle Scholar
  18. H.-P. Richter and P.S.U. Zimmermann, Dev. Growth Differ. 23, 479 (1981)Google Scholar
  19. Robertson, I., Nelson, R.: Manual of the International Embryo Transfer Society. In: Stringfellow, D.A., Seidel, S.M. (eds.). p.103. International Embryo Transfer Society, Illinois, (1998)Google Scholar
  20. U. Seger, S. Gawad, R. Johann, A. Bertsch, P. Renaud, Lab Chip 4, 148 (2004)CrossRefGoogle Scholar
  21. T. Sun, N.G. Green, S. Gawad, H. Morgan, IET Nanobiotechnol. 1, 69 (2007)CrossRefGoogle Scholar
  22. T. Sun, N.G. Green, H. Morgan, J. Phys.: Conference Series 142, 012029 (2008)CrossRefGoogle Scholar
  23. T. Tani, Y. Kato, Y. Tsunoda, Biol. Reprod. 64, 324 (2001)CrossRefGoogle Scholar
  24. B. Techaumnat, M. Washizu, J. Phys. D Appl. Phys. 40, 1831 (2007)CrossRefGoogle Scholar
  25. G. Tresset, S. Takeuchi, Biomed. Microdevices 6, 213 (2004)CrossRefGoogle Scholar
  26. A.E.P. Van Stekelenburg-Hamers, W.G. Van Inzen, T.A.E. Van Achterberg, T.A.M. Kruip, S.W. De Laat, S.M. Weima, Mol. Reprod. Dev. 36, 307 (1993)CrossRefGoogle Scholar
  27. M. Washizu, T. Nanba, S. Masuda, IEEE Trans. Ind. Appl. 26, 352 (1990)CrossRefGoogle Scholar
  28. D.N. Wells, P.M. Misica, H.R. Tervit, Biol. Reprod. 60, 996 (1999)CrossRefGoogle Scholar
  29. I. Wilmut, A.E. Schnieke, J. McWhir, A.J. Kind, K.H. Campbell, Nature 385, 810 (1997)CrossRefGoogle Scholar
  30. Y.K. Wu, J.G. Montes, R.A. Sjodin, Biophys. J. 61, 810 (1992)CrossRefGoogle Scholar
  31. Zimmermann, U., Neil, G.A.: Electromanipulation of cells. CRC press, (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of CanterburyChristchurchNew Zealand
  2. 2.AgResearch Limited, Ruakura Research CentreHamiltonNew Zealand

Personalised recommendations