Biomedical Microdevices

, Volume 11, Issue 3, pp 685–692

Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR

  • R. Hartung
  • A. Brösing
  • G. Sczcepankiewicz
  • U. Liebert
  • N. Häfner
  • M. Dürst
  • J. Felbel
  • D. Lassner
  • J. M. Köhler
Article

Abstract

We have established a fast PCR-based micro flow-through process consisting of a helical constructed tube reactor. By this approach we can detect transcripts of measles and human papilloma virus (HPV) by continuous flow allowing for reverse transcription (RT) and amplification of cDNA. The micro reaction system consisted of two columnar reactors for thermostating the different reaction zones of the RT process and the amplification. The PCR reactor was built by asymmetric heating sections thus realizing different residence times and optimal conditions for denaturation, annealing and elongation. The system concept is based on low electrical power consumption (50–120 W) and is suited for portable diagnostic applications. The samples were applied in form of micro fluidic segments with single volumes between 65 and 130 nL injected into an inert carrier liquid inside a Teflon FEP tube with an inner diameter of 0.5 mm. Optimal amplification for template lengths of 292 bp (lambda-DNA), 127 bp (measles virus) and 95 bp (HPV) was achieved by maximal cycle times of 75 s.

Keywords

Virus diagnostic Reverse transcription Rapid PCR Micro reactor Flow-through process Fluid segment technique 

References

  1. P.A. Auroux, Y. Koc, A. deMello, A. Manz, P.J. Day, Lab Chip 4, 534 (2004). doi:10.1039/b408850f CrossRefGoogle Scholar
  2. F.A. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl (eds.), “Current Protocols in Molecular Biology”, Wiley, New York (1998)Google Scholar
  3. J.R. Burns, C. Ramshaw, Lab Chip 1, 10 (2001)CrossRefGoogle Scholar
  4. M. Curcio, J. Roeraade, Anal. Chem. 75, 1 (2003)CrossRefGoogle Scholar
  5. J. Felbel, I. Bieber, J. Pieper, J.M. Köhler, Chem. Eng. J. 101, 333 (2004)CrossRefGoogle Scholar
  6. J. Felbel, A. Reichert, M. Kielpinski, M. Urban, T. Henkel, N. Häfner, M. Dürst, J. Weber, Chem. Eng. J. 135S, S298 (2008)CrossRefGoogle Scholar
  7. T. Fukuba, T. Yamamoto, T. Naganuma, T. Fujii, Chem. Eng. J. 101, 151 (2004)CrossRefGoogle Scholar
  8. A. Funfak, A. Brösing, M. Brand, J.M. Köhler, Lab. Chip. 7, 1132 (2007)CrossRefGoogle Scholar
  9. A. Grodrian, J. Metze, T. Henkel, K. Martin, M. Roth, J.M. Köhler, Biosens. Bioelectron. 19, 1421 (2004)CrossRefGoogle Scholar
  10. Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth, Lab Chip 5, 308 (2005)CrossRefGoogle Scholar
  11. M. Halbach, K. Koschel, J. Gen. Virol. 42, 615 (1979)CrossRefGoogle Scholar
  12. T. Henkel, T. Bermig, M. Kielpinski, A. Grodrian, J. Metze, J.M. Köhler, Chem. Eng. J. 101, 439 (2004)CrossRefGoogle Scholar
  13. J.M. Köhler, T. Henkel, A. Grodrian, T. Kirner, M. Roth, K. Martin, J. Metze, Chem. Eng. J. 101, 201 (2004)CrossRefGoogle Scholar
  14. M.U. Kopp, A.J. Mello, A. Manz, Science 280, 1046 (1998)CrossRefGoogle Scholar
  15. K. Martin, T. Henkel, V. Baier, A. Grodrian, T. Schon, M. Roth, J. Michael Köhler, J. Metze, Lab Chip 3, 202 (2003)CrossRefGoogle Scholar
  16. T. Nisisako, T. Torii, T. Higuchi, Lab. Chip. 2, 24 (2002)CrossRefGoogle Scholar
  17. N. Park, S. Kim, J.H. Hahn, Anal. Chem. 75, 6029 (2003)CrossRefGoogle Scholar
  18. S. Poser, T. Schulz, U. Dillner, V. Baier, J.M. Köhler, D. Schimkat, G. Mayer, A. Siebert, Sens. Actuators 62, 672 (1997)CrossRefGoogle Scholar
  19. I. Schneegass, J.M. Köhler, Rev. Mol. Biotech. 82, 101 (2001)Google Scholar
  20. H. Song, J.D. Tice, R.F. Ismagilov, Angew. Chem. Int. Ed. Engl. 42, 768 (2003)CrossRefGoogle Scholar
  21. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Phys. Rev. Lett. 86, 4163 (2001)CrossRefGoogle Scholar
  22. P. Wilding, M.A. Shoffner, L.J. Kricka, Clin. Chem. 40, 1815 (1994)Google Scholar
  23. A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup, Anal. Chem. 68, 4081 (1996)CrossRefGoogle Scholar
  24. C. Zhang, J. Xu, J. Wang, H. Wang, Anal. Lett. 40, 497 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Hartung
    • 1
    • 2
  • A. Brösing
    • 1
    • 7
  • G. Sczcepankiewicz
    • 3
  • U. Liebert
    • 3
  • N. Häfner
    • 4
  • M. Dürst
    • 4
  • J. Felbel
    • 5
    • 8
  • D. Lassner
    • 6
  • J. M. Köhler
    • 1
  1. 1.Institut für Physik, Physikalische Chemie/MikroreaktionstechnikTechnische Universität IlmenauIlmenauGermany
  2. 2.Institut für Biochemie IIKlinikum der Friedrich-Schiller-Universität JenaJenaGermany
  3. 3.Institut für VirologieUniversität LeipzigLeipzigGermany
  4. 4.FrauenklinikKlinikum der Friedrich-Schiller-Universität JenaJenaGermany
  5. 5.Institut für Photonische Technologien JenaJenaGermany
  6. 6.Institut Kardiale Diagnostik und Therapie GmbH BerlinBerlinGermany
  7. 7.Senckenberg Forschungsinstitut und NaturmuseumFrankfurtGermany
  8. 8.Analytik Jena AGJenaGermany

Personalised recommendations