Advertisement

Biomedical Microdevices

, Volume 11, Issue 3, pp 671–678 | Cite as

Sample preparation module for bacterial lysis and isolation of DNA from human urine

  • M. Dominika Kulinski
  • Madhumita Mahalanabis
  • Sara Gillers
  • Jane Y. Zhang
  • Satish Singh
  • Catherine M. KlapperichEmail author
Article

Abstract

Silica impregnated polymer monolithic columns may provide a simple method for lysing and extracting DNA from bacteria inside of microfluidic chips. Here we use Escherichia coli as a test organism for a point of care thermoplastic microfluidic module designed to take in a urine sample, mix it with lysis buffer, and perform a hybrid chemical/mechanical lysis and solid phase extraction of nucleic acids from the sample. To demonstrate proof-of-concept, we doped human hematuric urine samples with E. coli at concentrations ranging from 101–105 colony-forming units/mL (CFU/mL) to simulate patient samples. We then performed on-chip lysis and DNA extraction. The bacterial DNA was amplified using real-time PCR demonstrating lysis and isolation down to 101 CFU/mL. Results were comparable to a commercial kit at higher concentrations and performed better at recovering DNA at lower concentrations.

Keywords

Urine Gram-negative Bacteria Lysis PCR Urinary tract infection Microfluidic Thermoplastic Cyclic polyolefins 

Notes

Acknowledgments

We thank the Wallace H. Coulter Foundation for funding this research and H. Muayad for help with image analysis.

References

  1. E. Arroyo, E.K. Wheeler, R. Shediac, B. Hindson, S. Nasarabadi, G. Vrankovich, P. Bell, C. Bailey, T. Sheppod, A.T. Christian, Flow through pcr module of biobriefcase. Smart Medical and Biomedical Sensor Technology III, Proceedings of the SPIE, Vol. 6007, Proceedings of the SPIE (2005)Google Scholar
  2. P. Belgrader, D. Hansford, G.T. Kovacs, K. Venkateswaran, R. Mariella Jr., F. Milanovich, S. Nasarabadi, M. Okuzumi, F. Pourahmadi, M.A. Northrup, A minisonicator to rapidly disrupt bacterial spores for DNA analysis Anal. Chem. 71(19), 4232–4236 (1999). doi: 10.1021/ac990347o CrossRefGoogle Scholar
  3. S. Bent, B.K. Nallamothu, D.L. Simel, S.D. Fihn, S. Saint, Does this woman have an acute uncomplicated urinary tract infection? JAMA 287(20), 2701–2710 (2002). doi: 10.1001/jama.287.20.2701 CrossRefGoogle Scholar
  4. A. Bhattacharyya, C.M. Klapperich, Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics Anal. Chem. 78(3), 788–792 (2006). doi: 10.1021/ac051449j CrossRefGoogle Scholar
  5. R. Boom, C.J. Sol, M.M. Salimans, C.L. Jansen, P.M. Wertheim-van Dillen, J. van der Noordaa, Rapid and simple method for purification of nucleic acids J. Clin. Microbiol. 28(3), 495–503 (1990)Google Scholar
  6. M.C. Breadmore, S. Shrinivasan, K.A. Wolfe, M.E. Power, J.P. Ferrance, B. Hosticka, P.M. Norris, J.P. Landers, Towards a microchip-based chromatographic platform. Part 1: Evaluation of sol-gel phases for capillary electrochromatography Electrophoresis 23(20), 3487–3495 (2002). doi: 10.1002/1522-2683(200210)23:20<3487::AID-ELPS3487>3.0.CO;2-5 CrossRefGoogle Scholar
  7. M.C. Breadmore, K.A. Wolfe, I.G. Arcibal, W.K. Leung, D. Dickson, B.C. Giordano, M.E. Power, J.P. Ferrance, S.H. Feldman, P.M. Norris, J.P. Landers, Microchip-based purification of DNA from biological samples Anal. Chem. 75(8), 1880–1886 (2003). doi: 10.1021/ac0204855 CrossRefGoogle Scholar
  8. P.D. Brown, A. Freeman, B. Foxman, Prevalence and predictors of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan Clin. Infect. Dis. 34(8), 1061–1066 (2002). doi: 10.1086/339491 CrossRefGoogle Scholar
  9. X.W. Chen, Z.R. Xu, B.Y. Qu, Y.F. Wu, J. Zhou, H.D. Zhang, J. Fang, J.H. Wang, DNA purification on a lab-on-valve system incorporating a renewable microcolumn with in situ monitoring by laser-induced fluorescence Anal. Bioanal. Chem. 388(1), 157–163 (2007). doi: 10.1007/s00216-007-1196-0 CrossRefGoogle Scholar
  10. D. Di Carlo, K.H. Jeong, L.P. Lee, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation Lab Chip 3(4), 287–291 (2003). doi: 10.1039/b305162e CrossRefGoogle Scholar
  11. D. Di Carlo, C. Ionescu-Zanetti, Y. Zhang, P. Hung, L.P. Lee, On-chip cell lysis by local hydroxide generation Lab Chip 5(2), 171–178 (2005). doi: 10.1039/b413139h CrossRefGoogle Scholar
  12. C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability Proc. Natl. Acad. Sci. U S A 103(51), 19272–19277 (2006). doi: 10.1073/pnas.0604663103 CrossRefGoogle Scholar
  13. B. Foxman, B. Gillespie, J. Koopman, L. Zhang, K. Palin, P. Tallman, J.V. Marsh, S. Spear, J.D. Sobel, M.J. Marty, C.F. Marrs, Risk factors for second urinary tract infection among college women Am. J. Epidemiol. 151(12), 1194–1205 (2000)Google Scholar
  14. M. Franz, W.H. Horl, Common errors in diagnosis and management of urinary tract infection. I: Pathophysiology and diagnostic techniques Nephrol. Dial. Transplant. 14(11), 2746–2753 (1999). doi: 10.1093/ndt/14.11.2746 CrossRefGoogle Scholar
  15. C.A. Gaydos, M. Theodore, N. Dalesio, B.J. Wood, T.C. Quinn, Comparison of three nucleic acid amplification tests for detection of chlamydia trachomatis in urine specimens J. Clin. Microbiol. 42(7), 3041–3045 (2004). doi: 10.1128/JCM.42.7.3041-3045.2004 CrossRefGoogle Scholar
  16. K. Gupta, T.M. Hooton, W.E. Stamm, Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections Ann. Intern. Med. 135(1), 41–50 (2001)Google Scholar
  17. C. Hara, C., N., Wheeler, E., Sorensen, K., Arroyo, E., Vrankovich, G., A. Christian, Small sample whole-genome amplification. Smart Medical and Biomedical Sensor Technology III, Proceedings of the SPIE (2005)Google Scholar
  18. T.M. Hooton, R. Besser, B. Foxman, T.R. Fritsche, L.E. Nicolle, Acute uncomplicated cystitis in an era of increasing antibiotic resistance: a proposed approach to empirical therapy Clin. Infect. Dis. 39(1), 75–80 (2004). doi: 10.1086/422145 CrossRefGoogle Scholar
  19. G.L. Koenig, Viability of and plasmid retention in frozen recombinant Escherichia coli over time: a ten-year prospective study Appl. Environ. Microbiol. 69(11), 6605–6609 (2003). doi: 10.1128/AEM.69.11.6605-6609.2003 CrossRefGoogle Scholar
  20. J.C. Liao, M. Mastali, V. Gau, M.A. Suchard, A.K. Moller, D.A. Bruckner, J.T. Babbitt, Y. Li, J. Gornbein, E.M. Landaw, E.R. McCabe, B.M. Churchill, D.A. Haake, Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens J. Clin. Microbiol. 44(2), 561–570 (2006). doi: 10.1128/JCM.44.2.561-570.2006 CrossRefGoogle Scholar
  21. J.C. Liao, M. Mastali, Y. Li, V. Gau, M.A. Suchard, J. Babbitt, J. Gornbein, E.M. Landaw, E.R. McCabe, B.M. Churchill, D.A. Haake, Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection J. Mol. Diagn. 9(2), 158–168 (2007). doi: 10.2353/jmoldx.2007.060052 CrossRefGoogle Scholar
  22. C. Lindan, M. Mathur, S. Kumta, H. Jerajani, A. Gogate, J. Schachter, J. Moncada, Utility of pooled urine specimens for detection of chlamydia trachomatis and neisseria gonorrhoeae in men attending public sexually transmitted infection clinics in mumbai, india, by pcr J. Clin. Microbiol. 43(4), 1674–1677(2005). doi: 10.1128/JCM.43.4.1674-1677.2005 CrossRefGoogle Scholar
  23. T. Poeckh, S. Lopez, A.O. Fuller, M.J. Solomon, R.G. Larson, Adsorption and elution characteristics of nucleic acids on silica surfaces and their use in designing a miniaturized purification unit Anal. Biochem. 373(2), 253–262 (2008). doi: 10.1016/j.ab.2007.10.026 CrossRefGoogle Scholar
  24. T. Rohr, C. Yu, M.H. Davey, F. Svec, J.M. Frechet, Porous polymer monoliths: Simple and efficient mixers prepared by direct polymerization in the channels of microfluidic chips Electrophoresis 22(18), 3959–3967 (2001). doi: 10.1002/1522-2683(200110)22:18<3959::AID-ELPS3959>3.0.CO;2-5 CrossRefGoogle Scholar
  25. T.B. Stachowiak, T. Rohr, E.F. Hilder, D.S. Peterson, M. Yi, F. Svec, J.M. Frechet, Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices Electrophoresis 24(21), 3689–3693 (2003). doi: 10.1002/elps.200305536 CrossRefGoogle Scholar
  26. J. Stenman, A. Orpana, Accuracy in amplification Nat. Biotechnol. 19(11), 1011–1012 (2001). doi: 10.1038/nbt1101-1011b CrossRefGoogle Scholar
  27. A. Tan, S. Benetton, J.D. Henion, Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate Anal. Chem. 75(20), 5504–5511 (2003). doi: 10.1021/ac030196w CrossRefGoogle Scholar
  28. H. Tian, A.F. Huhmer, J.P. Landers, Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format Anal. Biochem. 283(2), 175–191 (2000). doi: 10.1006/abio.2000.4577 CrossRefGoogle Scholar
  29. M.A. Van Dilla, R.G. Langlois, D. Pinkel, D. Yajko, W.K. Hadley, Bacterial characterization by flow cytometry Science 220(4597), 620–622 (1983). doi: 10.1126/science.6188215 CrossRefGoogle Scholar
  30. H.Y. Wang, P.P. Banada, A.K. Bhunia, C. Lu, Rapid electrical lysis of bacterial cells in a microfluidic device Methods Mol. Biol. 385, 23–35 (2007). doi: 10.1007/978-1-59745-426-1_3 CrossRefGoogle Scholar
  31. K.A. Wolfe, M.C. Breadmore, J.P. Ferrance, M.E. Power, J.F. Conroy, P.M. Norris, J.P. Landers, Toward a microchip-based solid-phase extraction method for isolation of nucleic acids Electrophoresis 23(5), 727–733 (2002). doi: 10.1002/1522-2683(200203)23:5<727::AID-ELPS727>3.0.CO;2-O CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Dominika Kulinski
    • 1
  • Madhumita Mahalanabis
    • 3
  • Sara Gillers
    • 2
  • Jane Y. Zhang
    • 3
  • Satish Singh
    • 2
  • Catherine M. Klapperich
    • 1
    • 3
    Email author
  1. 1.Department of Mechanical EngineeringBoston UniversityBostonUSA
  2. 2.Boston University Medical CenterBostonUSA
  3. 3.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations