Advertisement

Biomedical Microdevices

, Volume 11, Issue 3, pp 571–578 | Cite as

Local drug delivery with a self-contained, programmable, microfluidic system

  • J. FieringEmail author
  • M. J. Mescher
  • E. E. Leary Swan
  • M. E. Holmboe
  • B. A. Murphy
  • Z. Chen
  • M. Peppi
  • W. F. Sewell
  • M. J. McKenna
  • S. G. Kujawa
  • J. T. Borenstein
Article

Abstract

The development and optimization of many new drug therapies requires long-term local delivery with controlled, but variable dosage. Current methods for chronic drug delivery have limited utility because they either cannot deliver drugs locally to a specific organ or tissue, do not permit changes in delivery rate in situ, or cannot be used in clinical trials in an untethered, wearable configuration. Here, we describe a small, self-contained system for liquid-phase drug delivery. This system enables studies lasting several months and infusion rates can be programmed and modified remotely. A commercial miniature pump is integrated with microfabricated components to generate ultralow flow rates and stroke volumes. Solutions are delivered in pulses as small as 370 nL, with pulses delivered at any interval of 1 min or longer. A unique feature of the system is the ability to infuse and immediately withdraw liquid, resulting in zero net volume transfer while compounds are exchanged by mixing and diffusion with endogenous fluid. We present in vitro results demonstrating repeatability of the delivered pulse volume for nearly 3 months. Furthermore, we present in vivo results in an otology application, infusing into the cochlea of a guinea pig a glutamate receptor antagonist, which causes localized and reversible changes in auditory sensitivity.

Keywords

Drug delivery Microsystems Microfluidics Controlled release Hearing Cochlea 

Notes

Acknowledgments

We are grateful to Sarah Tao for her contributions. This research was made possible by grant number 5R01DC006848-03 from the National Institutes of Health, National Institute on Deafness and other Communication Disorders.

Supplementary material

10544_2008_9265_MOESM1_ESM.doc (32 kb)
ESM1 (DOC 32.0 KB)

References

  1. Z. Chen, S.G. Kujawa, M.J. McKenna, J.O. Fiering, M.J. Mescher, J.T. Borenstein, E.E.L. Swan, W.F. Sewell, J. Control. Release 110, 1–19 (2005)doi: 10.1016/j.jconrel.2005.09.003 CrossRefGoogle Scholar
  2. C.E. Dubé, J.O. Fiering, M.J. Mescher, in Proc. IEEE Sensors, Orlando, (2002)Google Scholar
  3. N. Galley, R. Klinke, W. Oertel, M. Pause, W.H. Storch, Brain Res. 64, 55–63 (1973)CrossRefGoogle Scholar
  4. M.C. Holley, Br. Med. Bull. 63, 157–169 (2002)CrossRefGoogle Scholar
  5. M.C. Holley, Drug Discovery Today 10, 1269–1282 (2005)CrossRefGoogle Scholar
  6. N. Inamura, A.N. Salt, Hear. Res. 61, 12–18 (1992)CrossRefGoogle Scholar
  7. D.A. LaVan, T. McGuire, R. Langer, Nat. Biotechnol. 21, 1184–1191 (2003)CrossRefGoogle Scholar
  8. T. Littman, R.P. Bobbin, M. Fallon, J.L. Puel, Hear. Res. 40, 45–53 (1989)CrossRefGoogle Scholar
  9. D. Maillefer, S. Gamper, B. Frehner, P. Balmer, H. van Lintel, P. Renaud, in Proc. MEMS 2001, 14th IEEE International Conf. on, Interlaken, Switzerland, 413–417 (2001)Google Scholar
  10. D.M. Merfeld, W. Gong, J. Morrissey, M. Saginaw, C. Haburcakova, R.F. Lewis, IEEE Trans. Biomed Eng. 53, 2362–2372 (2006)CrossRefGoogle Scholar
  11. M.J. Mescher, C.E. Dube, M. Varghese, J.O. Fiering, in Proc. Micro Total Analysis Systems (MicroTAS), Squaw Valley CA, 947–950 (2003)Google Scholar
  12. M.J. Mescher, C.E. Dube, J.O. Fiering, D.L. Fyler, E.S. Kim, M. Hansberry, J.T. Borenstein, J.J. Bernstein, E. Gragoudas, J. Miller, in Proc. Annual Meeting Society for Biomaterials, Pittsburgh (2006)Google Scholar
  13. M.R. Prausnitz, Adv. Drug Deliv. Rev. 56, 581–587 (2004)CrossRefGoogle Scholar
  14. J.H. Prescott, S. Lipka, S. Baldwin, N.F.J. Sheppard, J.M. Maloney, J. Coppeta, B. Yomtov, M.A. Staples, J.T.J. Santini, Nat. Biotechnol. 24, 437–438 (2006)CrossRefGoogle Scholar
  15. S.Z. Razzacki, P.K. Thwar, M. Yang, V.M. Ugaz, M.A. Burns, Adv. Drug Deliv. Rev. 56, 185–198 (2004)CrossRefGoogle Scholar
  16. N. Roxhed, B. Samel, L. Nordquist, P. Griss, G. Stemme, in Proc. MEMS 2006, 19th International Conf. on, Istanbul, 414–417 (2006)Google Scholar
  17. W.M. Saltzman, Drug Delivery: Engineering Principles for Drug Therapy (Oxford University Press, New York, 2001)Google Scholar
  18. J.T.J. Santini, M.J. Cima, R. Langer, Nature 397, 335–338 (1999)CrossRefGoogle Scholar
  19. J.T.J. Santini, A.C. Richards, R. Scheidt, M.J. Cima, R. Langer, Angew. Chem. Int. Ed. 39, 2396–2407 (2000)CrossRefGoogle Scholar
  20. M. Thorne, A.N. Salt, J.E. DeMott, M.M. Henson, O.W.J. Henson, S.L. Gewalt, The Laryngoscope 109, 1661–1668 (1999)CrossRefGoogle Scholar
  21. A.K. Wise, R. Richardson, J. Hardman, G. Clark, S. O'Leary, J Comp Neurol 487, 147–165 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Fiering
    • 1
    Email author
  • M. J. Mescher
    • 1
  • E. E. Leary Swan
    • 1
    • 2
  • M. E. Holmboe
    • 1
  • B. A. Murphy
    • 3
  • Z. Chen
    • 3
    • 4
    • 5
  • M. Peppi
    • 3
    • 4
    • 5
  • W. F. Sewell
    • 3
    • 4
    • 5
    • 6
  • M. J. McKenna
    • 4
    • 5
  • S. G. Kujawa
    • 3
    • 4
    • 5
    • 7
    • 8
  • J. T. Borenstein
    • 1
  1. 1.Charles Stark Draper LaboratoryCambridgeUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Eaton Peabody LaboratoryMassachusetts Eye and Ear InfirmaryBostonUSA
  4. 4.Department of Otology and LaryngologyHarvard Medical SchoolBostonUSA
  5. 5.Department of OtolaryngologyMassachusetts Eye and Ear InfirmaryBostonUSA
  6. 6.Program in NeuroscienceHarvard Medical SchoolBostonUSA
  7. 7.Department of AudiologyMassachusetts Eye and Ear InfirmaryBostonUSA
  8. 8.Harvard-MIT Program in Speech and Hearing Bioscience and TechnologyBostonUSA

Personalised recommendations