Biomedical Microdevices

, Volume 11, Issue 3, pp 547–555 | Cite as

Integrated microfluidic devices for combinatorial cell-based assays

Article

Abstract

The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed “on-chip” transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.

Keywords

Microfluidic devices Cell-based assay Apoptosis Transfection Cell culture 

Supplementary material

10544_2008_9260_MOESM1_ESM.doc (102 kb)
ESM 1(DOC 115 KB)
10544_2008_9260_MOESM2_ESM.mov (11.8 mb)
ESM Movie 1(MOV 11.8 MB)

References

  1. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems. 2. Analytical standard operations and applications Anal. Chem. 74, 2637–2652 (2002). doi:10.1021/ac020239t CrossRefGoogle Scholar
  2. M.R. Bennett, W.L. Pang, N.A. Ostroff, B.L. Baumgartner, S. Nayak, L.S. Tsimring, J. Hasty, Metabolic gene regulation in a dynamically changing environment Nature 454, 1119–1122 (2008). doi:10.1038/nature07211 CrossRefGoogle Scholar
  3. S.H. Cartmell, B.D. Porter, A.J. Garcia, R.E. Guldberg, Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro Tissue Eng. 9, 1197–1203 (2003). doi:10.1089/10763270360728107 CrossRefGoogle Scholar
  4. H.P. Chou, M.A. Unger, S.R. Quake, A microfabricated rotary pump Biomed. Microdevices 3(4), 323–330 (2001). doi:10.1023/A:1012412916446 CrossRefGoogle Scholar
  5. B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon, Human neural stem cell growth and differentiation in a gradient-generating microfluidic device Lab Chip 5, 401–406 (2005). doi:10.1039/b417651k CrossRefGoogle Scholar
  6. P.S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery Nat. Rev. Drug Discov. 5, 210–218 (2006). doi:10.1038/nrd1985 CrossRefGoogle Scholar
  7. P.S. Dittrich, K. Tachikawa, A. Manz, Micro total analysis systems. Latest advancements and trends Anal. Chem. 78, 3887–3907 (2006). doi:10.1021/ac0605602 CrossRefGoogle Scholar
  8. R. Gomez-Sjoberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Versatile, fully automated, microfluidic cell culture system Anal. Chem. 79, 8557–8563 (2007). doi:10.1021/ac071311w CrossRefGoogle Scholar
  9. W. Gu, X. Zhu, N. Futai, B.S. Cho, S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays Proc. Natl. Acad. Sci. U. S. A. 101, 15861–15866 (2004). doi:10.1073/pnas.0404353101 CrossRefGoogle Scholar
  10. D.C. Hill, S.K. Wrigley, L.J. Nisbet, Novel screen methodologies for identification of new microbial metabolites with pharmacological activity Adv. Biochem. Eng. Biotechnol. 59, 73–121 (1998). doi:10.1007/BFb0102297 CrossRefGoogle Scholar
  11. B. Hudson, W.B. Upholt, J. Devinny, J. Vinograd, The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA Proc. Natl. Acad. Sci. U. S. A. 62, 813–820 (1969). doi:10.1073/pnas.62.3.813 CrossRefGoogle Scholar
  12. J.M. Irish, N. Kotecha, G.P. Nolan, Mapping normal and cancer cell signalling networks: towards single-cell proteomics Nat. Rev. Cancer 6, 146–155 (2006). doi:10.1038/nrc1804 CrossRefGoogle Scholar
  13. B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes Anal. Chem. 78, 4291–4298 (2006). doi:10.1021/ac051856v CrossRefGoogle Scholar
  14. L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Microfluidic arrays for logarithmically perfused embryonic stem cell culture Lab Chip 6, 394–406 (2006). doi:10.1039/b511718f CrossRefGoogle Scholar
  15. L. Kim, Y.C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells Lab Chip 7, 681–694 (2007). doi:10.1039/b704602b CrossRefGoogle Scholar
  16. N. Korin, A. Bransky, U. Dinnar, S. Levenberg, A parametric study of human fibroblasts culture in a microchannel bioreactor Lab Chip 7, 611–617 (2007). doi:10.1039/b702392h CrossRefGoogle Scholar
  17. C.C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, H.R. Tseng, Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics Science 310, 1793–1796 (2005). doi:10.1126/science.1118919 CrossRefGoogle Scholar
  18. Q. Liang, M. Yamamoto, D.T. Curiel, H.R. Herschman, Noninvasive imaging of transcriptionally restricted transgene expression following intratumoral injection of an adenovirus in which the COX-2 promoter drives a reporter gene Mol. Imaging Biol. 6, 395–404 (2004). doi:10.1016/j.mibio.2004.09.002 CrossRefGoogle Scholar
  19. S.J. Martin, S.V. Lennon, A.M. Bonham, T.G. Cotter, Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis J. Immunol. 145, 1859–1867 (1990)Google Scholar
  20. L.J. Millet, M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette, Microfluidic devices for culturing primary mammalian neurons at low densities Lab Chip 7, 987–994 (2007). doi:10.1039/b705266a CrossRefGoogle Scholar
  21. L.K. Minor, Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods Curr. Opin. Drug Discov. Devel. 6, 760–765 (2003)Google Scholar
  22. J.M. Padron, C.L. van der Wilt, K. Smid, E. Smitskamp-Wilms, H.H. Backus, P.E. Pizao, G. Giaccone, G.J. Peters, The multilayered postconfluent cell culture as a model for drug screening Crit. Rev. Oncol. Hematol. 36, 141–157 (2000). doi:10.1016/S1040-8428(00)00083-4 CrossRefGoogle Scholar
  23. J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Microfluidic culture platform for neuroscience research Nat. Protoc. 1, 2128–2136 (2006). doi:10.1038/nprot.2006.316 CrossRefGoogle Scholar
  24. D. Rajotte, P. Haddad, A. Haman, E.J. Cragoe Jr., T. Hoang, Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3 J. Biol. Chem. 267, 9980–9987 (1992)Google Scholar
  25. D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology Anal. Chem. 74, 2623–2636 (2002). doi:10.1021/ac0202435 CrossRefGoogle Scholar
  26. A. Sin, K.C. Chin, M.F. Jamil, Y. Kostov, G. Rao, M.L. Shuler, The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors Biotechnol. Prog. 20, 338–345 (2004). doi:10.1021/bp034077d CrossRefGoogle Scholar
  27. W.H. Song, J. Kwan, G.V. Kaigala, V.N. Hoang, C.J. Backhouse, Readily integrated, electrically controlled microvalves J. Micromechanics Microengineering 8, 1071–1078 (2008)Google Scholar
  28. M. Tafani, D.A. Minchenko, A. Serroni, J.L. Farber, Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine Cancer Res. 61, 2459–2466 (2001)Google Scholar
  29. Y.C. Toh, C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher, H. Yu, A novel 3D mammalian cell perfusion-culture system in microfluidic channels Lab Chip 7, 302–309 (2007). doi:10.1039/b614872g CrossRefGoogle Scholar
  30. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies Lab Chip 5, 14–19 (2005). doi:10.1039/b405719h CrossRefGoogle Scholar
  31. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation Nat. Protoc. 1, 1092–1104 (2006). doi:10.1038/nprot.2006.123 CrossRefGoogle Scholar
  32. F. Traganos, Z. Darzynkiewicz, T. Sharpless, M.R. Melamed, Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system J. Histochem. Cytochem. 25, 46–56 (1977)Google Scholar
  33. Y. Umezawa, Genetically encoded optical probes for imaging cellular signaling pathways Biosens. Bioelectron. 20, 2504–2511 (2005). doi:10.1016/j.bios.2004.10.015 CrossRefGoogle Scholar
  34. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography Science 288, 113–116 (2000). doi:10.1126/science.288.5463.113 CrossRefGoogle Scholar
  35. X. Wang, N.G. Zelenski, J. Yang, J. Sakai, M.S. Brown, J.L. Goldstein, Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis EMBO J. 15, 1012–1020 (1996)Google Scholar
  36. J. Wang, G. Sui, V.P. Mocharla, R.J. Lin, M.E. Phelps, H.C. Kolb, H.R. Tseng, Integrated microfluidics for parallel screening of an in situ click chemistry library Angew. Chem. Int. Ed. Engl. 45, 5276–5281 (2006). doi:10.1002/anie.200601677 CrossRefGoogle Scholar
  37. P.K. Wong, F. Yu, A. Shahangian, G. Cheng, R. Sun, C.M. Ho, Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm Proc. Natl. Acad. Sci. U. S. A. 105, 5105–5110 (2008). doi:10.1073/pnas.0800823105 CrossRefGoogle Scholar
  38. Y.N. Xia, G.M. Whitesides, Soft lithography Annu. Rev. Mater. Sci. 28, 153–184 (1998). doi:10.1146/annurev.matsci.28.1.153 CrossRefGoogle Scholar
  39. M.Y. Zhang, P.J. Lee, P.J. Hung, T. Johnson, L.P. Lee, M.R. Mofrad, Microfluidic environment for high density hepatocyte culture Biomed. Microdevices 10, 117–121 (2008). doi:10.1007/s10544-007-9116-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zeta Tak For Yu
    • 1
    • 2
    • 3
  • Ken-ichiro Kamei
    • 2
    • 3
  • Hiroko Takahashi
    • 2
  • Chengyi Jenny Shu
    • 4
  • Xiaopu Wang
    • 2
    • 3
  • George Wenfu He
    • 2
    • 3
  • Robert Silverman
    • 3
  • Caius G. Radu
    • 2
    • 3
  • Owen N. Witte
    • 3
    • 4
    • 5
  • Ki-Bum Lee
    • 6
  • Hsian-Rong Tseng
    • 2
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Crump Institute for Molecular ImagingUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Molecular and Medical PharmacologyUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Microbiology, Immunology, and Molecular GeneticsUniversity of CaliforniaLos AngelesUSA
  5. 5.The Howard Hughes Medical InstituteUniversity of CaliforniaLos AngelesUSA
  6. 6.Department of Chemistry and Chemical Biology, Institute for Advanced Materials, Devices and Nanotechnology, The Rutgers Stem Cell Research Center, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations