Biomedical Microdevices

, Volume 11, Issue 3, pp 539–545

Out-of-plane microtube arrays for drug delivery—liquid flow properties and an application to the nerve block test

  • Kuniharu Takei
  • Takahiro Kawashima
  • Takeshi Kawano
  • Hidekazu Kaneko
  • Kazuaki Sawada
  • Makoto Ishida
Article

Abstract

We have proposed fabricating very fine out-of-plane silicon-dioxide microtube arrays using a selective vapor–liquid–solid (VLS) growth technique and microfabrication processes. In this study, we elucidated the liquid-flow properties of microtubes with different inner diameters. Our fabricated microtubes were 0.5 μm in wall thickness; 20 μm in height; and either 2.5 μm, 4.1 μm, 4.6 μm, or 6.4 μm in inner diameter. We determined the relationship between the flow pressure and the liquid flow rate through the microtube. We also conducted a nerve block test, in which a microtube with 4.6 μm inner diameter was used to administer lidocaine solution (Na channel blocker) to the rat sciatic nerve. This successful test represents the first reported use of a microtube for drug delivery to the peripheral nerve of a rat. We conclude that the proposed microtube array and its fabrication process might contribute to developing pharmacological devices.

Keywords

Microtube Microneedle Drug delivery Vapor–liquid–solid (VLS) 

References

  1. V.W.S. Chan, S. Nazarnia, Z. Kaszas, A. Perlas, Anesth. Analg. 89, 1006 (1999). doi:10.1097/00000539-199910000-00034 CrossRefGoogle Scholar
  2. C. Chen, J.G. Santiago, J. Microelectromech. Syst. 11, 672 (2002). doi:10.1109/JMEMS.2002.805055 CrossRefGoogle Scholar
  3. J. Chen, K.D. Wise, J.F. Hetke, S.C. Bledsoe, IEEE Trans. Biomed. Eng. 44, 760 (1997). doi:10.1109/10.605435 CrossRefGoogle Scholar
  4. L. Chen, J. Ma, F. Tan, Y. Guan, Sens. Actuators B Chem. 88, 260 (2003). doi:10.1016/S0925-4005(02)00348-9 CrossRefGoogle Scholar
  5. Y. Choi, M.A. McClain, M.C. LaPlaca, A. Bruno Frazier, M.G. Allen, Biomed. Microdevices 9, 7 (2007). doi:10.1007/s10544-006-9004-8 CrossRefGoogle Scholar
  6. H. Cui, Z. Silber-Li, S. Zhu, Phys. Fluids 16, 1803 (2004). doi:10.1063/1.1691457 CrossRefGoogle Scholar
  7. J. Edmonds-Seal, G.M.C. Paterson, A.B. Loach, J. R. Soc. Med. 73, 111 (1980)Google Scholar
  8. R. Freedman, B.J. Hoffer, D.J. Woodward, Br. J. Pharmacol. 54, 529 (1975)Google Scholar
  9. T. Kawano, Y. Kato, R. Tani, H. Takao, K. Sawada, M. Ishida, IEEE Trans. Elctron Devices 51, 415 (2004). doi:10.1109/TED.2003.822473 CrossRefGoogle Scholar
  10. M. Legault, P.P. Rompre, R.A. Wise, J. Neurosci. 15, 1635 (2000)Google Scholar
  11. L. Li, V. Rema, F.F. Ebner, J. Neurophysiol. 94, 3342 (2005). doi:10.1152/jn.00357.2005 CrossRefGoogle Scholar
  12. L. Lin, A.P. Pisano, J. Microelectromech. Syst. 8, 78 (1999). doi:10.1109/84.749406 CrossRefGoogle Scholar
  13. D.V. McAllister, M.G. Allen, M.R. Prausnitz, Annu. Rev. Biomed. Eng. 02, 289 (2000). doi:10.1146/annurev.bioeng.2.1.289 CrossRefGoogle Scholar
  14. A. Paavola, J. Yliruusi, Y. Kajimoto, E. Kalso, T. Wahlstrom, P. Rosenberg, Pharm. Res. 12, 1997 (1995). doi:10.1023/A:1016264527738 CrossRefGoogle Scholar
  15. D.P. Papageorgiou, S.E. Shore, S.C. Bledsoe Jr., K.D. Wise, J. Microelectromech. Syst. 15, 1025 (2006). doi:10.1109/JMEMS.2005.863733 CrossRefGoogle Scholar
  16. M.R. Prausnitz, Adv. Drug Deliv. Rev. 56, 581 (2004). doi:10.1016/j.addr.2003.10.023 CrossRefGoogle Scholar
  17. S. Rajaraman, S. Choi, R.H. Shafer, J.D. Ross, J. Vukasinovic, Y. Choi, S.P. DeWeerth, A. Glezer, M.G. Allen, J. Micromech. Microeng. 17, 163 (2007). doi:10.1088/0960-1317/17/1/021 CrossRefGoogle Scholar
  18. M. Richter, P. Woias, D. Weib, Sens. Actuators A Phys. 62, 480 (1997). doi:10.1016/S0924-4247(97)01486-6 CrossRefGoogle Scholar
  19. J. Rodriguez, V. Rodriguez, A. Naveira, O. Quintela, M. Barcena, E. Gallardo, F. Gude, J. Alvarez, Acta Anaesthesiol. Scand. 45, 893 (2001). doi:10.1034/j.1399-6576.2001.045007893.x CrossRefGoogle Scholar
  20. N. Roxhed, P. Griss, G. Stemme, Biomed. Microdevices 10, 271 (2008). doi:10.1007/s10544-007-9133-8 CrossRefGoogle Scholar
  21. K. Takei, T. Kawashima, K. Sawada, M. Ishida, IEEE Sens. J. 8, 470 (2008a). doi:10.1109/JSEN.2008.918262 CrossRefGoogle Scholar
  22. K. Takei, T. Kawashima, T. Kawano, H. Takao, K. Sawada, M. Ishida, J Micromechanics Microengineering, 18, 035033 (2008b). doi:10.1088/0960-1317/18/3/035033
  23. S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, T. Suzuki, Lab Chip 5, 519 (2005). doi:10.1039/b417497f CrossRefGoogle Scholar
  24. K. Takoh, T. Ishibashi, T. Matsue, M. Nishizawa, Sens. Actuators B Chem. 108, 683 (2005). doi:10.1016/j.snb.2004.12.090 CrossRefGoogle Scholar
  25. B. Todd Sitzman, C.A. DiFazio, P.A. Playfair, R.A. Stevens, C.F. Hanes, T.B. Herman, H. Kendall Yates, G.S. Leisure, Reg. Anesth. Pain Med. 26, 246 (2001). doi:10.1053/rapm.2001.22587 Google Scholar
  26. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964). doi:10.1063/1.1753975 CrossRefGoogle Scholar
  27. A.P. Wolff, O.H.G. Wilder Smith, B.J.P. Crul, M.P. van de Heijden, J. Groen, Anesth. Analg. 99, 496 (2004). doi:10.1213/01.ANE.0000122268.70154.A9 CrossRefGoogle Scholar
  28. C. Ziegler, T. Suzuki, S. Takeuchi, J. Microelectromech. Syst. 15, 1477 (2006). doi:10.1109/JMEMS.2006.879681 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kuniharu Takei
    • 1
    • 5
  • Takahiro Kawashima
    • 2
  • Takeshi Kawano
    • 1
    • 4
  • Hidekazu Kaneko
    • 3
  • Kazuaki Sawada
    • 1
    • 4
  • Makoto Ishida
    • 1
    • 4
  1. 1.Department of Electrical and Electronic EngineeringToyohashi University of TechnologyToyohashiJapan
  2. 2.Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  4. 4.Japan Science and Technology Agency—CRESTKawaguchiJapan
  5. 5.Japan Society for the Promotion of ScienceTokyoJapan

Personalised recommendations