Advertisement

Biomedical Microdevices

, 11:503 | Cite as

Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications

  • Khalil KhanaferEmail author
  • Ambroise Duprey
  • Marty Schlicht
  • Ramon Berguer
Article

Abstract

Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

Keywords

Elasticity PDMS elastomer Tensile testing True stress–strain 

Notes

Acknowledgments

This work was supported by the Frankel Vascular Research Fund.

References

  1. R. Bashir, Intelligent therapeutics: Biomimetic systems and nanotechnology. Drug Deliv. 56, 1565–1586 (2004).Google Scholar
  2. D.H. Bergel, J. Physiol. 156, 445–457 (1961)Google Scholar
  3. E.O. Carew, J. Patel, A. Garg, P. Houghtaling, E. Blackstone, I. Vesely, Ann. Biomed. Eng. 31, 526–535 (2003). doi: 10.1114/1.1568116 CrossRefGoogle Scholar
  4. K.B. Chandran, M.J. Vonesh, The role of mechanics in vascular biology (Kluwer, Dordrecht, 1998), pp. 130–168.Google Scholar
  5. C.J. Chuong, Y.C. Fung, Three-dimensional stress distribution in arteries J. Biomech. Eng. 105, 268–274 (1983)Google Scholar
  6. R.H. Cox, Am. J. Physiol 234, H280–H288 (1978)Google Scholar
  7. P.B. Dobrin, Physiol. Rev 58, 397–460 (1978)Google Scholar
  8. P.B. Dobrin, R. Mrkvicka, J. Hypertens. 10, S7–S10 (1992). doi: 10.1097/00004872-199208001-00003 CrossRefGoogle Scholar
  9. T.C. Doehring, A.D. Freed, E.O. Carew, I. Vesely, J. Biomech. Eng. 127, 700–708 (2005 ). doi: 10.1115/1.1933900 CrossRefGoogle Scholar
  10. T. Fukui, T. Matsumoto, T. Tanaka, T. Ohashi, K. Kumagai, H. Akimoto, Biomed. Mater. Eng. 15, 295–305 (2005)Google Scholar
  11. Y.C. Fung, Biomechanics: Mechanical properties of living tissues (Springer, New York, 1988), p. 433Google Scholar
  12. C.M. He, M.R. Roach, J. Vasc. Surg. 20, 6–13 (1994)Google Scholar
  13. G.A. Holzapfel, J. Theor. Biol 238, 290–302 (2006)CrossRefMathSciNetGoogle Scholar
  14. R.Y. Kannan, H.J. Salacinski, K. Sales, P. Butler, A.M. Seifalian, Biomaterials 26, 1857–1875 (2005). doi: 10.1016/j.biomaterials.2004.07.006 CrossRefGoogle Scholar
  15. G.S. Kassab, J.A. Navia, Annu. Rev. Biomed. Eng. 8, 499–535 (2006 ). doi: 10.1146/annurev.bioeng.8.010506.105023 CrossRefGoogle Scholar
  16. M. Liu, Q. Chen. J, Micro/Nanolith. MEMS MOEMS (2007).Google Scholar
  17. T. Ohashi, H. Abe, T. Matsumoto, M. Sato, J. Biomech. 38, 2248–2256 (2005). doi: 10.1016/j.jbiomech.2004.09.019 CrossRefGoogle Scholar
  18. P.J. Prendergast, C. Lally, S. Daly, A.J. Reid, T.C. Lee, D.D. Quinn, J. Biomech. Eng. 125, 692–699 (2003). doi: 10.1115/1.1613674 CrossRefGoogle Scholar
  19. M.L. Raghavan, M.W. Webster, D.A. Vorp, Ann. Biomed. Eng. 24, 573–582 (1996). doi: 10.1007/BF02684226 CrossRefGoogle Scholar
  20. M.S. Sacks, W. Sun, Annu. Rev. Biomed. Eng, 5, 251–284 (2003). doi: 10.1146/annurev.bioeng.5.011303.120714 CrossRefGoogle Scholar
  21. D.P. Sokolis, E.M. Kefaloyannis, M. Kouloukoussa, E. Marinos, H. Boudoulas, P.E. Karayannacos, J. Biomech. 39, 1651–1662 (2006). doi: 10.1016/j.jbiomech.2005.05.003 CrossRefGoogle Scholar
  22. M.J. Thubrikar, M. Labrosse, F. Robicsek, J. Al-Soudi, B. Fowler, J. Med. Eng. Technol. 25, 133–142 (2001). doi: 10.1080/03091900110057806 CrossRefGoogle Scholar
  23. J.P. Vande Geest, M.S. Sacks, D.A. Vorp, J. Biomech. Eng. 126, 815–822 (2004). doi: 10.1115/1.1824121 CrossRefGoogle Scholar
  24. D.A. Vorp, B.J. Schiro, M.P. Ehrlich, T.S. Juvonen, M.A. Ergin, B.P. Griffith, Ann. Thorac. Surg. 75, 1210–1214 (2003). doi: 10.1016/S0003-4975(02)04711-2 CrossRefGoogle Scholar
  25. L. Xue, H.P. Greisler, J. Vasc. Surg. 37, 472–480 (2003). doi: 10.1067/mva.2003.88 CrossRefGoogle Scholar
  26. J. Yang, A.R. Webb, S.J. Pickerill, G. Hageman, G.A. Ameer, Biomaterials 27, 1889–1898 (2006). doi: 10.1016/j.biomaterials.2005.05.106 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Khalil Khanafer
    • 1
    Email author
  • Ambroise Duprey
    • 1
  • Marty Schlicht
    • 1
  • Ramon Berguer
    • 1
    • 2
  1. 1.Vascular Mechanics Laboratory, Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Section of Vascular SurgeryUniversity of MichiganAnn ArborUSA

Personalised recommendations