Biomedical Microdevices

, Volume 11, Issue 2, pp 495–501 | Cite as

Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays

  • M. Shein
  • A. Greenbaum
  • T. Gabay
  • R. Sorkin
  • M. David-Pur
  • E. Ben-Jacob
  • Y. HaneinEmail author


Standard micro-fabrication techniques which were originally developed to fabricate semi-conducting electronic devices were inadvertently found to be adequate for bio-chip fabrication suited for applications such as stimulation and recording from neurons in-vitro as well as in-vivo. However, cell adhesion to conventional micro-chips is poor and chemical treatments are needed to facilitate the interaction between the device surface and the cells. Here we present novel carbon nanotube-based electrode arrays composed of cell-alluring carbon nanotube (CNT) islands. These play a double role of anchoring neurons directly and only onto the electrode sites (with no need for chemical treatments) and facilitating high fidelity electrical interfacing–recording and stimulation. This method presents an important step towards building nano-based neurochips of precisely engineered networks. These neurochips can provide unique platform for studying the activity patterns of ordered networks as well as for testing the effects of network damage and methods of network repair.


Carbon nanotubes Electrodes Stimulation Circuit Neurochip 



The authors thank Inna Brainis for her technical assistance and Moti-Ben David, Itsik Kalifa, Itay Baruchi and Nadav Raichman for their assistance and useful discussions. This project was supported in part by a grant from the Israeli Science Foundation (1138/04) and by the Tauber Fund at Tel Aviv University.


  1. A. Ayali, E. Fuchs, Y. Zilberstein, A. Robinson, O. Shefi, E. Hulata, I. Baruchi, E. Ben-Jacob, Contextual regularity and complexity of neuronal activity: from stand-alone cultures to task-performing animals Complexity 9(6), 25–32 (2004) doi: 10.1002/cplx.20046 CrossRefGoogle Scholar
  2. J.N. Barisci, G.G. Wallace, R.H. Baughman, Electrochemical studies of single-wall carbon nanotubes in aqueous solutions J. Electroanal. Chem. 488(2), 92–98 (2000) doi: 10.1016/S0022-0728(00)00179-0 CrossRefGoogle Scholar
  3. E. Bekyarova, Y. Ni, E.B. Malarkey, V. Montana, J.L. McWilliams, R.C. Haddon, V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicine J. Biomed. Nanotech. 1, 3–17 (2005) doi: 10.1166/jbn.2005.004 CrossRefGoogle Scholar
  4. L.J. Breckenridge, R.J. Wilson, P. Connolly, A.S. Curtis, J.A. Dow, S.E. Blackshaw, C.D. Wilkinson, Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording J. Neurosci. Res. 42(2), 266–276 (1995) doi: 10.1002/jnr.490420215 CrossRefGoogle Scholar
  5. J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors Carbon 40(8), 1193–1197 (2002) doi: 10.1016/S0008-6223(01)00266-4 CrossRefGoogle Scholar
  6. H.G. Craighead, C.D. James, A.M.P. Turner, Chemical and topographical patterning for directed cell attachment Curr. Opin. Solid State Mater. Sci. 5(2–3), 177–184 (2001) doi: 10.1016/S1359-0286(01)00005-5 CrossRefGoogle Scholar
  7. M. David-Pur, C. Adams, E. Sernagor, R. Sorkin, A. Greenbaum, M. Shein, E. Ben-Jacob, Y. Hanein, 2008. Carbon nanotube based MEA for retinal interfacing applications. Proc. of the 6th International meeting on substrate-integrated micro electrode arrays, pp. 253–256, Reutlingen, GermanyGoogle Scholar
  8. N.M. Dowell-Mesfin, M.A. Abdul-Karim, A.M. Turner, S. Schanz, H.G. Craighead, B. Roysam, J.N. Turner, W. Shain, Topographically modified surfaces affect orientation and growth of hippocampal neurons J. Neural Eng. 1(2), 78–90 (2004) doi: 10.1088/1741-2560/1/2/003 CrossRefGoogle Scholar
  9. T. Gabay, E. Jakobs, E. Ben-Jacob, Y. Hanein, Engineered self-organization of neural networks using carbon nanotube clusters Physica A. 350, 611–621 (2005)CrossRefGoogle Scholar
  10. T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z.R. Abrams, E. Ben-Jacob, Y. Hanein, Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays Nanotechnology 18(3), 35201 (2007) doi: 10.1088/0957-4484/18/3/035201 CrossRefGoogle Scholar
  11. M. Grattarola, S. Martinoia, Modeling the neuron-microtransducer junction: from extracellular to patch recording IEEE Trans. Biomed. Eng. 40(1), 35–41 (1993) doi: 10.1109/10.204769 CrossRefGoogle Scholar
  12. H. Hu, Y. Ni, V. Montana, R.C. Haddon, V. Parpura, Chemically functionalized carbon nanotubes as substrates for neuronal growth Nano Lett. 4(3), 507–511 (2004) doi: 10.1021/nl035193d CrossRefGoogle Scholar
  13. E. Hulata, R. Segev, E. Ben-Jacob, A method for spike sorting and detection based on wavelet packets and Shannon's mutual information J. Neurosci. Methods 117(1), 1–12 (2002) doi: 10.1016/S0165-0270(02)00032-8 CrossRefGoogle Scholar
  14. Y. Jimbo, A. Kawana, Electrical stimulation and recording from cultured neurons using a planar electrode array Bioelectrochem. Bioenerg. 29(2), 193–204 (1992) doi: 10.1016/0302-4598(92)80067-Q CrossRefGoogle Scholar
  15. J. Li, A. Cassell, L. Delzeit, J. Han, M. Meyyappan, Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles J. Phys. Chem. B 106(36), 9299–9305 (2002) doi: 10.1021/jp021201n CrossRefGoogle Scholar
  16. C. Liu, A.J. Bard, F. Wudl, I. Weitz, J.R. Heath, Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors Electrochem. Solid-State Lett. 2, 577 (1999) doi: 10.1149/1.1390910 CrossRefGoogle Scholar
  17. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, L. Ballerini, Carbon nanotube substrates boost neuronal electrical signaling Nano Lett. 5(6), 1107–1110 (2005) doi: 10.1021/nl050637m CrossRefGoogle Scholar
  18. M.P. Mattson, R.C. Haddon, A.M. Rao, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth J. Mol. Neurosci. 14(3), 175–182 (2000) doi: 10.1385/JMN:14:3:175 CrossRefGoogle Scholar
  19. A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro, H. Markram, M. Prato, L. Ballerini, Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits J. Neurosci. 27(26), 6931–6936 (2007) doi: 10.1523/JNEUROSCI.1051-07.2007 CrossRefGoogle Scholar
  20. T.D. Nguyen-Vu, H. Chen, A.M. Cassell, R.J. Andrews, M. Meyyappan, J. Li, Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface IEEE Trans. Biomed. Eng. 54(6 Pt 1), 1121–1128 (2007) doi: 10.1109/TBME.2007.891169 CrossRefGoogle Scholar
  21. R. Segev, M. Benveniste, E. Hulata, N. Cohen, A. Palevski, E. Kapon, Y. Shapira, E. Ben-Jacob, Long term behavior of lithographically prepared in vitro neuronal networks Phys. Rev. Lett. 88(11), 118102 (2002) doi: 10.1103/PhysRevLett.88.118102 CrossRefGoogle Scholar
  22. R. Segev, M. Benveniste, Y. Shapira, E. Ben-Jacob, Formation of electrically active clusterized neural networks Phys. Rev. Lett. 90(16), 168101 (2003) doi: 10.1103/PhysRevLett.90.168101 CrossRefGoogle Scholar
  23. R. Sorkin, T. Gabay, P. Blinder, D. Baranes, E. Ben-Jacob, Y. Hanein, Compact self-wiring in cultured neural networks J. Neural Eng. 3(2), 95–101 (2006) doi: 10.1088/1741-2560/3/2/003 CrossRefGoogle Scholar
  24. R. Sorkin, A. Greenbaum, M. David-Pur, S. Anava, A. Ayali, E. Ben-Jacob, Y. Hanein, Process entanglement as a neuronal anchorage mechanism to rough surfaces Nanotechnology (2008) (in press)Google Scholar
  25. D.A. Stenger, G.W. Gross, E.W. Keefer, K.M. Shaffer, J.D. Andreadis, W. Ma, J.J. Pancrazio, Detection of physiologically active compounds using cell-based biosensors Trends Biotechnol. 19(8), 304–309 (2001) doi: 10.1016/S0167-7799(01)01690-0 CrossRefGoogle Scholar
  26. K. Wang, H.A. Fishman, H. Dai, J.S. Harris, Neural stimulation with a carbon nanotube microelectrode array Nano Lett. 6(9), 2043–2048 (2006) doi: 10.1021/nl061241t CrossRefGoogle Scholar
  27. T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants Nanotechnology 15(1), 48–54 (2004) doi: 10.1088/0957-4484/15/1/009 CrossRefGoogle Scholar
  28. B.C. Wheeler, J.M. Corey, G.J. Brewer, D.W. Branch, Microcontact printing for precise control of nerve cell growth in culture J. Biomech. Eng. 121(1), 73–78 (1999) doi: 10.1115/1.2798045 CrossRefGoogle Scholar
  29. Z. Yu, T.E. McKnight, M.N. Ericson, A.V. Melechko, M.L. Simpson, B.M. Ill, Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices Nano Lett. 7(8), 2188–2195 (2007) doi: 10.1021/nl070291a CrossRefGoogle Scholar
  30. X. Zhang, S. Prasad, S. Niyogi, A. Morgan, M. Ozkan, C.S. Ozkan, Guided neurite growth on patterned carbon nanotubes Sens. Actuators B Chem. 106(2), 843–850 (2005) doi: 10.1016/j.snb.2004.10.039 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Shein
    • 1
  • A. Greenbaum
    • 1
  • T. Gabay
    • 1
  • R. Sorkin
    • 1
  • M. David-Pur
    • 1
  • E. Ben-Jacob
    • 2
  • Y. Hanein
    • 1
    Email author
  1. 1.School of Electrical EngineeringTel-Aviv UniversityTel-AvivIsrael
  2. 2.School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations